Accepted for publication in *Journal of Zoology* published by Wiley: <u>https://doi.org/10.1111/jzo.12731</u>

1	Title: The relative effects of prey availability, anthropogenic pressure and						
2	environmental variables on lion (Panthera leo) site use in Tanzania's Ruaha landscape						
3	during the dry season						
4							
5	Authors: Leandro Abade ^{1,2} , Jeremy Cusack ³ , Remington J. Moll ² , Paolo Strampelli ¹ ,						
6	Amy J. Dickman ¹ , David W. Macdonald ¹ , Robert A. Montgomery ^{1,2}						
7							
8	Institutional affiliations:						
9	^{1.} Wildlife Conservation Research Unit, Department of Zoology, University of Oxford,						
10	The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon,						
11	OX13 5QL, UK						
12	^{2.} Research on the Ecology of Carnivores and their Prey Laboratory, Department of						
13	Fisheries and Wildlife, Michigan State University, 480 Wilson Road, 13 Natural						
14	Resources Building, East Lansing, MI 48824, USA						
15	^{3.} University of Stirling, 3A149, Stirling, FK9 4LA, UK						
16							
17							
18	This is the peer reviewed version of the following article: Abade, L., Cusack, J., Moll, R.J., Strampelli, P., Dickman, A.J., Macdonald, D.W. and Montgomery, R.A. (2020), The relative effects of prey availability, anthropogenic pressure and						
19	environmental variables on lion (Panthera leo) site use in Tanzania's Ruaha landscape during the dry season. <i>Journal of Zoology</i> , 310: 135-144, which has been published in final form at https://doi.org/10.1111/jzo.12731. This article may be used for non-commercial nurmerous in accordance with Wiley Terms and Conditions for self-archiving.						
20	used for non-commercial purposes in accordance with whey remis and conditions for sen-archiving.						
21							
22							
•••							

- 23
- 24
- 25

- 26 Abstract
- 27

28 African lion (*Panthera leo*) populations have been reduced by almost half in the past 29 two decades, with national parks and game reserves maintaining vital source 30 populations, particularly in East Africa. However, much of the habitats necessary to 31 support lion populations occur in unprotected lands surrounding protected areas. 32 There is an ongoing need for understanding the ecological determinants of lion 33 occurrence in these unprotected habitats, where lions are most vulnerable to 34 extinction. This study evaluated variations in lion site use along a gradient of 35 anthropogenic pressure encompassing the Ruaha National Park, Pawaga-Idodi 36 Wildlife Management Area (WMA) and unprotected village lands via camera-37 trapping. We collected lion occurrence data in the dry seasons of 2014 and 2015, and 38 modelled lion site use as a function of environmental and anthropogenic variables 39 under a Bayesian framework. We recorded 143 lion detections within the national 40 park, 14 in the WMA, and no detections in village lands. This result does not imply 41 that lions never use the village lands, but rather that we did not detect them in our 42 surveys during the dry season. Our findings suggest that lion site use was primarily 43 associated with high seasonal wild prey biomass in protected areas. Thus, we infer 44 that human-induced prey depletion and lion mortality are compromising lion site use 45 of village lands. Seasonal prey movements, and a corresponding concentration inside 46 the park during sampling, could also play an important role in lion site use. These findings reinforce the need to secure large-bodied prey base to conserve lions, and the 47 48 importance of protected areas as key refugia for the species.

50 Keywords: Bayesian, conservation, occupancy modelling, human-carnivore conflict,
51 Ruaha

52

53 Introduction

54 Protected areas, such as national parks, act as vital refugia for wildlife, serving 55 as protection for large-scale ecological processes and ecosystem functions 56 (Woodroffe & Ginsberg 1998; Le Saout et al. 2013). However, sustained human 57 activities around protected areas contribute to their fragmentation (Wittemver et al. 58 2008), creating a mosaic of often too small and/or isolated protected areas to 59 effectively conserve large wide-ranging mammal species (Crooks et al. 2011; Lindsey 60 et al. 2017). For instance, land use change around protected areas can alter 61 immigration/emigration rates (Cushman et al. 2015), limit the genetic diversity of 62 wildlife populations (Frankham, Bradshaw & Brook 2014), and ultimately population 63 dynamics (Cushman et al. 2015). These issues are particularly apparent in Africa, 64 where human population growth has rapidly intensified conversion of wilderness and 65 greatly fragmented protected areas (Wittemyer et al. 2008). Correspondingly, large 66 mammal populations have declined by almost 60% in the past 40 years, apart from in 67 intensively managed and often fenced ecosystems in southern Africa (Craigie et al. 68 2010). Consequently, human encroachment and habitat conversion around protected 69 areas present some of the greatest conservation challenges of the 21st century 70 (Woodroffe & Ginsberg 1998). 71 Large carnivore persistence is particularly affected by human encroachment 72 and habitat conversion around protected areas (Woodroffe & Ginsberg 1998). In these 73 areas, large carnivores experience high mortality, and are imperilled by various

real sources of human-induced mortality including conflict-related killings (Dickman et

75	al. 2014), illegal trophy-hunting (Loveridge et al. 2016), and bushmeat poaching
76	(Lindsey et al. 2017). The high offtake observed in these areas can affect the
77	demographic structure of and induce source-sink dynamics in carnivore populations
78	and drive populations to local extinction (Woodroffe & Ginsberg 1998; Loveridge et
79	al. 2010). Paradoxically, given large home range requirements and wide ranging
80	tendencies, much of the habitat necessary to sustain viable large carnivore populations
81	occurs outside of protected areas (Nowell & Jackson 1996). Thus, the fate of large
82	carnivore populations may lie in the often unprotected and largely human-dominated
83	habitat surrounding protected areas (Crooks et al. 2011; Carter & Linnell 2016).
84	Habitat located outside protected areas is particularly crucial for African lions
85	(Panthera leo), as approximately 44% of the species range is associated with habitat
86	that has no official protected status (Lindsey et al. 2017). African lion populations
87	have declined by almost half in the last 20 years, with threats including habitat loss,
88	prey depletion, conflict-related mortality, trade in lion body parts, and poorly-
89	regulated trophy hunting (Bauer et al. 2015; Lindsey et al. 2017). Apart from trophy
90	hunting, all these sources of mortality are more likely to occur outside strictly
91	protected habitats where intense human activities interfere with lion movement
92	patterns, dispersal ability, and demographics (Cushman et al. 2015; Loveridge et al.
93	2016). In fact, one study suggests that lions cannot persist in human-dominated
94	landscapes when they reach a minimum density of 25 people/km2, a threshold likely
95	relates to intense land-use conversion, prey depletion, and habitat degradation (Riggio
96	et al. 2012; Lindsey et al. 2017). Given prevailing anthropogenic disturbance, these
97	human-dominated landscapes represent the areas where lions and other large
98	carnivores are most vulnerable to mortality and extinction risk (Loveridge et al. 2016;
99	Lindsey et al. 2017). The predicted increase in human population growth in Africa,

which is likely to double by 2050 (PRB 2016), will intensify human-lion interactions,
and exacerbate competition over finite resources such as prey and space around
protected areas, with an expected increase in conflict and its ensuing detrimental
effects on lion survival. Thus, determining the extent to which lions can occupy these
human-dominated areas is of major importance, as such habitats are likely to become
increasingly important for their conservation.

106 Here we used a camera-trapping based survey to investigate the influence of 107 environmental and anthropogenic variables on lion site use across a gradient of 108 anthropogenic pressure in Tanzania's Ruaha landscape during the dry seasons of 2014 109 and 2015. We hypothesised increased lion site use in areas: i) closer to the Great 110 Ruaha river (Abade, Macdonald & Dickman 2014b; Cusack et al. 2016) and surface 111 water (Davidson et al. 2013; Oriol-Cotterill et al. 2015); ii) further from households 112 and in areas of low human and livestock density (Everatt, Andresen & Somers 2014; 113 Oriol-Cotterill et al. 2015); iii) closer to ranger posts, due to increased surveillance 114 that might result in lower rates of lion human persecution or poaching of lions (Henschel et al. 2016); iv) increased prey biomass (Hayward & Kerley 2005; 115 116 Davidson et al. 2013); and v) of increased vegetation cover, given its influence on 117 determining prey catchability (Hopcraft, Sinclair & Packer 2005) and lion hunting 118 success (Davies et al. 2016) in savannah ecosystems (Table 1). 119 The Ruaha landscape represents one of the largest strongholds for lion 120 populations (Riggio et al. 2012), as well as a region where lions experience some of 121 the highest known rates of conflict-related mortality in East Africa (Abade, 122 Macdonald & Dickman 2014a; Dickman 2015). Despite its significance for lion 123 conservation globally (Riggio et al. 2012), the paucity of information about the spatial 124 ecology and distribution of lions in this landscape has been suggested to hinder

125	conservation planning for the species by the Tanzania Wildlife Research Institute,
126	which has listed this area as a national priority for lion research (TAWIRI 2009).
127	Thus, the data generated by our study can be used to support strategies aiming at
128	promoting conservation of lions and potentially other large carnivores in human-
129	dominated landscapes, both locally and where there is overlap between lions and
130	people.
131	
132	Materials and Methods
133	
134	The Ruaha landscape
135	Tanzania's Ruaha landscape (Fig 1) spans over 50,000 km ² and is composed
136	of the Ruaha National Park (RNP), Game Reserves, Pawaga-Idodi Wildlife
137	Management Area (WMA), and surrounding village lands. There are no fences
138	separating RNP, WMA and village lands, and wildlife can move without restriction
139	across these areas. Trophy hunting of wildlife is prohibited within RNP and in the
140	surrounding village lands, but is permitted in the Game Reserves and in limited
141	sections of the WMA. In the village lands, which contains over 60,000 people across
142	22 villages, carnivores are exposed to various sources of anthropogenic disturbance
143	and mortality, including habitat conversions, intense human-carnivore conflict,
144	bushmeat snaring, and killings for body parts (Abade et al. 2018). Human livelihood
145	is primarily based on agriculture and domestic livestock rearing. Livestock herds are
146	commonly found grazing without restriction across village land and WMA during the
147	day, reportedly under the surveillance of herders and untrained guarding dogs. At
148	night, the stock is typically housed in bomas, with cattle usually in a separate boma
149	from smallstock (Abade, Macdonald & Dickman 2014a). Attitudes towards large

carnivores among local people tend to be negative, principally due to the actual or
perceived risk of depredation upon livestock (Dickman *et al.* 2014), even though
carnivore depredation accounts for modest stock loss, particularly when compared to
diseases (Dickman *et al.* 2014). Yet, carnivore attacks on livestock generate intense
hostility and lead to high levels of retaliatory and preventative lion killings (Abade,
Macdonald & Dickman 2014b; Dickman 2015).

The climate of the region is semi-arid to arid, and the vegetation is a mosaic of
semi-arid savannahs and Zambesian *miombo* woodlands (Sosovele & Ngwale 2002).
The village lands are primarily covered by rice and maize fields and grazing areas.

159

160 *Lion occurrence data*

161 We studied lion site use by deploying 127 non-baited, remotely triggered, 162 single camera-trap stations (CTs) that sampled 11 areas across the Ruaha landscape 163 during the dry seasons (May to December) of 2014 and 2015. In 2014, we used 42 164 Reconvx HC500 CTs, and sampled the Msembe area, near the park headquarters, 165 where there is low anthropogenic pressure (Cusack et al. 2015). In 2015, we used 85 166 Bushnell Scoutguard CTs to extend our survey into 10 additional areas, including four 167 sampling areas in RNP, two in the WMA, and four in the village lands (Fig 1). The 168 CTs set up and trail placement followed the methodology described in Abade et al 169 (2018). We used a pseudostratified method for deploying our CTs, ensuring a 170 minimum 1.5–2 km distance between stations, and 15–20 km distance between 171 sampling areas in 2015. The sampling areas were distributed across a three distance 172 bins from the border of the national park (0-10 km; 10-20 km; >30 km) to examine 173 potential spatial variation in lion occurrence. We set the CTs facing animal trails 174 when the pre-defined GPS coordinates were found within 5 meters from the nearest

open path showing signs of animal use. All the CTs were placed in trees or poles at a
height of 0.3–0.5 meters off the ground. We visited the CTs every 30–50 days to
retrieve data and service the traps.

178 We pooled lion occurrence data and analysed them in a single-season 179 framework, as previous studies have found similar lion and other large carnivore 180 detection and occupancy rates across dry seasons in Ruaha (Cusack et al. 2016; 181 Abade et al. 2018). We collapsed the temporal sampling extent into seven-day bin 182 intervals across a 32-week survey (~210 days) period. Due to the long duration of the 183 survey, we relaxed the population closure assumption of the occupancy model 184 (MacKenzie et al. 2006), and thus adjusted the interpretation of the occupancy 185 parameter from true occupancy to proportion of site used by lions during the overall 186 survey period, rather than the probability of continuous site occupation (MacKenzie et 187 al. 2006). The lion occurrence data are available on GitHub following the link 188 https://goo.gl/9NURjE. 189

190 Environmental and anthropogenic variables

191 We modelled lion site use based on ecologic variables of known influence on 192 lion occupancy and spatial distribution (Table 1), while accounting for the effect of 193 trail type (animal trails - AT; no-trails - NT; human-made roads - RD) on lion detection (Fig. 2). We created covariate rasters at a 1km² resolution. We first 194 195 manually created shapefiles depicting households, the Great Ruaha river, and ranger 196 posts by digitizing aerial imagery. We then created the rasters for distance to 197 households, Great Ruaha river, and ranger posts rasters using the "Proximity" 198 function in GDAL proximity module in QGIS (QGIS 2018). We calculated the human 199 and livestock density rasters based on the numbers of people co-habiting each

200 property mapped in the study site, and those of domestic stock owned per household 201 through the kernel density estimator tool. We characterised vegetation cover based on 202 the Vegetation Continuous Fields (VCF) data derived from the MOD44B product 203 (Townshend et al. 2011) for the study period. The VCF data ranges from 0-100%, and 204 provides information on the proportional percentage estimates for vegetation cover 205 types (including woody and herbaceous vegetation, and bare ground) for each 206 landscape pixel, with higher values associated with increased vegetation cover. We 207 calculated the distance to surface water sources using the HubDistance function in 208 QGIS. We only considered surface water sources that sustained water for over 6 209 months of the year, based on the water seasonality data from Peckel et al. (2016). 210 We calculated a temporal catch-per unit effort (CPUE) index of prey biomass 211 for each CTs based on the number of independent records (> 5 min (Burton et al. 212 2012; Abade et al. 2018) for all large- and medium-bodied wild prey photographed 213 during the survey. The principle behind CPUE is that the proportional representation 214 the catch from a population should increase when population density or effort 215 increases (Seber 1992). Thus, conceptually, CPUE could serve as an abundance 216 index, and be used to detect variation in numbers as in abundance itself. We classified 217 large prey as those herbivores with a mean body weight > 100 kg (Ripple *et al.* 2015), 218 and medium prey as those weighing between 18 to 100 kg (Hayward & Kerley 2005; 219 Owen-Smith & Mills 2008). Prey weight was based on the estimated average male 220 body mass for each species (Tacutu et al. 2013). We calculated the CPUE index by 221 multiplying the number of independent events at each station by the species average 222 weight, divided by the CTs sampling effort, and standardised per 100 camera trap 223 days (Burton et al. 2012; Abade et al. 2018). We considered independent detection

events for lion and prey as those with > 5 minutes between records (Burton *et al.*2012; Abade *et al.* 2018).

226	Prior to model fitting, we standardized all the covariates, and assessed them					
227	for multi-collinearity and correlation based on the results of Pearson correlation and					
228	variance inflation factor tests. We only used minimally correlated covariates (Pearson					
229	<0.7, VIF <3 (Zuur, Ieno & Elphick 2010); see Table S1; S2 in Supporting					
230	Information). Thus, we removed distance to the Great Ruaha river and livestock					
231	density from the analyses due to high correlation with the other covariates (Table S1,					
232	S2).					
233						
234	Model analyses and averaging					
235	We used temporally replicated surveys (i.e. weeks) to estimate the latent,					
236	unobserved site use at each CTs Z_i , where $Z_i = 1$ if site <i>i</i> is used and 0 otherwise, and					
237	detection probability $p_{i,j}$, where $p_{i,j}$ is the probability that lions are detected at site <i>i</i>					
238	during replicate <i>j</i> , given site use (i.e., $Z_i = 1$) (MacKenzie <i>et al.</i> 2002; Tyre <i>et al.</i>					
239	2003). We included a random intercept indexed for each of the sampling areas (Moll					
240	et al. 2016; Abade et al. 2018), to minimise the spatial autocorrelation among model					
241	residuals (Fig S1). Our final model for lion site use was:					
242						
243	$logit(\Psi_i) = \alpha_{area} + \alpha_1 * Medium prey_i + \alpha_2 * Large prey_i + \alpha_3 * Distance household_i + \alpha_3 *$					
244	α_4 *Distance ranger post _i + α_5 *VCF _i + α_6 *Distance surface water _i + α_7 *Density of					
245	humans _i					
246	(Eq. 1)					
247	where Ψ_i represents the probability of lion site use at the <i>i</i> th CT, α_{area} represents a					

random intercept indexed by area with estimated hyperparameters μ (mean) and τ^2

(variance), and *α*_{1,2,...5} represent the influence of associated covariates at the *i*th CT
(Table 1).
The final detection model was implemented as follows:

252

253
$$\operatorname{logit}(p_{i, j}) = \beta_0 + \beta_k * \operatorname{Trail}_i$$

254 (Eq. 2)

255

where $p_{i,j}$ represents the detection probability at the *i*th CT during survey *j* given site 256 use (i.e., $Z_i = 1$), β_0 is the intercept, and β_k represents the effect of the k^{th} trail type on 257 258 lion detection at each CT (k = 3), with animal trail as the reference category. To 259 ensure that vegetation did not interfere with the probability of detecting wildlife, we 260 conducted a *post hoc* analysis that included VCF as a covariate. This analysis 261 revealed no effect of VCF on detection probability ($\beta_{VCF} = 0.05, 95\%$ credible interval 262 = (-0.20, 0.26), inclusion probability = 0.03). 263 We fit the models using a Bayesian framework and Markov chain Monte 264 Carlo (MCMC) simulations in R v.2.13.0 and JAGS (Plummer 2003) using the 265 package 'R2jags' (Su & Yajima 2012). We estimated the effect of each covariate on 266 site use through the Bayesian inclusion parameter w_c ; (Kuo & Mallick 1998), which 267 had a Bernoulli distribution and an uninformative prior probability of 0.5. The 268 posterior probability of w_c corresponds to the estimated probability of any given covariate ('C') to be included in the best model of a set of 2^C candidate models (Royle 269 270 & Dorazio 2008; Burton et al. 2012; Moll et al. 2016). We calculated model-averaged 271 estimates for the covariate coefficients over the global models from MCMC posterior 272 histories (Royle & Dorazio 2008). We used uninformative uniform priors and 273 implemented the models using three chains of 500,000 iterations each, discarding the

first 50,000 as burn-in, and thinned the posterior chains by 10. Uninformative uniform priors translate to posterior mean estimates that are strongly shaped by the data rather than prior assumptions. We assessed the convergence of the models by ensuring R-hat values for all parameters were <1.1 (Gelman & Hill 2007).</p>

278

279 **Results**

280 We recorded 157 independent lion detections at 35 (28%) of the 127 CTs over 281 a total of 12,987 camera-trap days. We documented the spatial variation in lion 282 detections across sampling areas, with the highest number of detections (n=143; 91%) 283 in RNP (Fig 1). The WMA had far fewer detections (n=14; 9%), and we did not 284 detect lions in the village lands (Table 2). We recorded 17,143 independent events of 285 lion prey, with 13,709 (80%) in RNP, 3,138 (18%) in the WMA, and 296 (2%) in the 286 village lands (Table 3). Notably, there were no detections of several preferred lion 287 prey species, such as buffalo, giraffe and zebra, on village lands (Table 3). We 288 detected over 2,800 independent livestock events in 32 out of 35 village land CTs. 289 We found that lion site use was significantly influenced by increased biomass 290 of large and medium prey (Table 4, Fig 3). Of these prey-related covariates, large 291 prey had the stronger effect on lion site use, as indicated by its larger posterior mean 292 and higher inclusion probability (w_c Large prey = 0.98; Table 4). We found a positive, 293 albeit non-significant (i.e. large variation and credible intervals overlapping zero), 294 association between lion site use and increased distance to households, ranger posts, 295 and increased vegetation cover (Table 4, Fig 3). Similarly, we found a positive 296 although non-significant correlation between lion site use and proximity to surface 297 water on lion occupancy. Inclusion probabilities indicated that large and medium 298 prey, and distance to household were the most common covariates included in the

model (Table 4). Lion detection probability was lower at CTs placed off-trail in
comparison to those on animal trails and human-made roads, but this effect was
relatively weak overall (Table 4).

302

303 Discussion

In this study, we only detected lions in habitats that had a protected status, and comparatively higher wild prey availability. We did not detect lions in the unprotected village lands, despite their known presence in these areas, as evidenced by spoor, livestock depredations and conflict with people (Dickman 2015).

308 Lion site use was positively associated with higher levels of wild prey

309 occurrence. More importantly, we found that wild large prey was the main

310 determinant for site use during the dry season in comparison to other covariates,

311 corroborating previous findings that showed large-bodied wild prey availability to

312 shape lion spatial distribution and habitat use (Hayward & Kerley 2005; Davidson et

313 *al.* 2013). Additionally, our findings are similar to those presented by Cusack et al.

314 (2016) regarding the significant positive effects of large prey species on lion

315 occupancy and detection in RNP. Thus, we suggest that plans to effectively conserve

316 lions in Ruaha should prioritise protecting large wild prey base, given its strong

317 influence on determining lion site use.

318 In this study, we detected no evidence of lion use of the village lands, which

319 could indicate low lion population densities in these areas due to persecution,

320 behavioral avoidance of such areas, or both. We have similarly observed low use of

321 village lands for other large carnivores in this landscape (Abade *et al.* 2018). We

322 suspect that the current rate of land conversion (Lobora *et al.* 2017), coupled with low

323 prey availability, intense bushmeat poaching (Knapp, Peace & Bechtel 2017),

324 pastoralism, and high levels of human-carnivore conflict (Abade, Macdonald & 325 Dickman 2014a; Dickman et al. 2014) all help to limit lion site use outside protected 326 areas. In this way, our results add to a growing body of research demonstrating the 327 importance of protected areas as key refugia for lions (Bauer et al. 2015; Lindsey et 328 al. 2017). We did not find significant influence of proximity to surface water on lion 329 occupancy, although we observed a positive trend on lion site use closer to surface 330 water. Surface water has been documented as an important predictor of lion spatial 331 distribution across African semi-arid savannahs, especially during dry seasons (de 332 Boer et al. 2010; Valeix, Loveridge & Macdonald 2012; Davidson et al. 2013; Oriol-333 Cotterill *et al.* 2015), and proximity to the Great Ruaha river has been highlighted as 334 an important predictor for habitat suitability for large carnivores in Ruaha (Abade, 335 Macdonald & Dickman 2014b). Thus, the lack of a relationship between lion site use 336 and surface water is somewhat surprising. One possible explanation for these results 337 could be associated with lions and prey relying in more ephemeral water sources than 338 those considered here (i.e. < 6 months), which could be diluting the effects of surface 339 water on site use. Additionally, information on artificial surface water such as bore 340 holes and livestock ponds were not considered in this study due to lack of 341 georeferenced data, and this could be contributing to hinder our understanding of 342 overall surface water supply on prey and lion site use patterns during the dry season. 343 Given the marked seasonality on the study site, we recommend that further studies 344 should collect data across the rainy season in order to fully understand the relative 345 influence of anthropogenic and environmental variables on lion site use in this area. 346 Finally, despite the fact that collinearity prevented us from considering distance to the 347 Great Ruaha river could not be included in the model due to collinearity with distance 348 to ranger post (Table S1), we evaluated its effect in a *post hoc* analysis by replacing

the ranger covariate with the Great Ruaha river covariate. The results illustrate that distance to the Great Ruaha river had a negligible effect on lion site use (posterior mean = 0.92, sd = 2.10, 95% credible interval = (-3.33, 4.60), inclusion probability = 0.45).

It is noteworthy that we did record 14 lion detections in the northern portion of the WMA in a region with minimal human and livestock activity, and where park and private anti-poaching patrolling are relatively common. Despite a lack of significant influence of ranger posts on lion site use, the known presence of patrolling could be helping to lessen poaching and grazing activities, and contributing to lion occurrence in this area.

359 Poaching and displacement by livestock are known factors contributing to 360 prey depletion (Ripple et al. 2015), which can be even more detrimental to carnivores 361 than direct anthropogenic mortality (Rosenblatt et al. 2016). These effects can alter 362 lion populations (Henschel et al. 2016), and are likely limiting lion occurrence in the 363 village lands. Furthermore, lions are exposed to high human-induced mortality around 364 RNP due to intense conflict (Abade, Macdonald & Dickman 2014a; Dickman et al. 365 2014). Since 2010, over 100 lions have been killed by humans in the village lands 366 (Dickman, pers. obs.). Although the effect of such killings on lion populations in 367 Ruaha is yet to be quantified, they might be contributing to reduced lion numbers in 368 the village lands, and hence to the low detection and site use observed here. Of 369 substantial concern is the potential for these killings to lead to source-sinks for lions 370 locally, with possibility to affect the population within the national park as well, as 371 observed elsewhere in Africa (Woodroffe & Frank, 2005; Loveridge et al. 2010; 372 Loveridge et al. 2016). Increasing human tolerance of lions in village lands by 373 translating their presence into tangible benefits to local communities could minimise

374	carnivore persecution and mortality (Dickman et al. 2014). Additionally, efforts to
375	sustain wild prey base within human-dominated landscapes should be considered
376	given their important influence on defining lion and other carnivores site use.
377	Increased wild prey availability in village lands could help to alleviate predation on
378	domestic livestock, although it might also have the unintended consequence of
379	increased conflict associated with livestock depredation. Furthermore, concerted
380	efforts to systematically improve husbandry practices using predator-proof bomas
381	(Abade, Macdonald & Dickman 2014a), and prevention of human-carnivore conflict,
382	could lead to a substantial reduction in lion and other large carnivore mortality, and
383	contribute to conservation of these species in village lands (Weise et al., 2018).
384	Lastly, efforts to improve food security, diversifying access to protein sources other
385	than wild prey, and minimizing the potential economic reliance on bushmeat trade by
386	local villagers could help alleviating unsustainable bushmeat harvesting (van Vliet et
387	al. 2016), as well as the ensuing negative effects of prey depletion on lion
388	conservation.
389	
390	
391	
392	
393	
394	
395	
396	
397	
398	

References

401	Abade, L., Cusack, J., Moll, R.J., Strampelli, P., Dickman, A.J., Macdonald, D.W. &					
402	Montgomery, R.A. (2018) Spatial variation in leopard (Panthera pardus) site					
403	use across a gradient of anthropogenic pressure in Tanzania's Ruaha					
404	landscape. <i>PloS one</i> , 13 , e0204370.					
405	Abade, L., Macdonald, D.W. & Dickman, A.J. (2014a) Assessing the relative					
406	importance of landscape and husbandry factors in determining large carnivore					
407	depredation risk in Tanzania's Ruaha landscape. Biological Conservation,					
408	180, 241-248.					
409	Abade, L., Macdonald, D.W. & Dickman, A.J. (2014b) Using landscape and					
410	bioclimatic features to predict the distribution of lions, leopards and spotted					
411	hyaenas in Tanzania's Ruaha landscape. PLoS ONE, 9, e96261.					
412	Bauer, H., Chapron, G., Nowell, K., Henschel, P., Funston, P., Hunter, L.T.B.,					
413	Macdonald, D.W. & Packer, C. (2015) Lion (Panthera leo) populations are					
414	declining rapidly across Africa, except in intensively managed areas.					
415	Proceedings of the National Academy of Sciences, 112 , 14894-14899.					
416	Burton, A.C., Sam, M.K., Balangtaa, C. & Brashares, J.S. (2012) Hierarchical multi-					
417	species modeling of carnivore responses to hunting, habitat and prey in a West					
418	African protected area. PLoS ONE, 7.					
419	Carter, N.H. & Linnell, J.D.C. (2016) Co-adaptation is key to coexisting with large					
420	carnivores. Trends in Ecology & Evolution, 31 , 575-578.					
421	Craigie, I.D., Baillie, J.E.M., Balmford, A., Carbone, C., Collen, B., Green, R.E. &					
422	Hutton, J.M. (2010) Large mammal population declines in Africa's protected					
423	areas. Biological Conservation, 143, 2221-2228.					
424	Crooks, K.R., Burdett, C.L., Theobald, D.M., Rondinini, C. & Boitani, L. (2011)					
425	Global patterns of fragmentation and connectivity of mammalian carnivore					
426	habitat. Philosophical Transactions of the Royal Society B: Biological					
427	<i>Sciences</i> , 366 , 2642-2651.					
428	Cusack, J.J., Dickman, A.J., Kalyahe, M., Rowcliffe, J.M., Carbone, C., MacDonald,					
429	D.W. & Coulson, T. (2016) Revealing kleptoparasitic and predatory					
430	tendencies in an African mammal community using camera traps: a					
431	comparison of spatiotemporal approaches. <i>Oikos</i> , 126 , 812–822.					
432	Cusack, J.J., Dickman, A.J., Rowcliffe, J.M., Carbone, C., Macdonald, D.W. &					
433	Coulson, T. (2015) Random versus game trail-based camera trap placement					
434	strategy for monitoring terrestrial mammal communities. <i>PLoS ONE</i> , 10(5):					
435	e0126373.					
436	Cushman, S.A., Elliot, N.B., Macdonald, D.W. & Loveridge, A.J. (2015) A multi-					
437	scale assessment of population connectivity in African lions (Panthera leo) in					
438	response to landscape change. Landscape Ecology, 1-17.					
439	Davidson, Z., Valeix, M., Van Kesteren, F., Loveridge, A.J., Hunt, J.E.,					
440	Murindagomo, F. & Macdonald, D.W. (2013) Seasonal diet and prey					
441	preference of the African Lion in a waterhole-driven semi-arid savanna. $PLoS$					
442	$UNE, \delta, e00182.$					
443	Davies, A.B., Tambling, U.J., Kerley, U.I.H. & Asner, G.P. (2016) Effects of					
444	vegetation structure on the location of lion Kill sites in African thicket. <i>PLoS</i>					
445	<i>ONE</i> , 11 , e0149098.					

446	de Boer, W.F., Vis, M.J., de Knegt, H.J., Rowles, C., Kohi, E.M., van Langevelde, F.,					
447	Peel, M., Pretorius, Y., Skidmore, A.K. & Slotow, R. (2010) Spatial					
448	distribution of lion kills determined by the water dependency of prey species.					
449	Journal of Mammalogy, 91 , 1280-1286.					
450	Dickman, A.J. (2015) Large carnivores and conflict in Tanzania's Ruaha landscape.					
451	Conflicts in Conservation: Navigating towards solutions (eds S.M. Redpath,					
452	R.J. Gutiérrez, K.A. Wood, A. Evely & J.C. Young), pp. 30-32. Cambridge					
453	University Press.					
454	Dickman, A.J., Hazzah, L., Carbone, C. & Durant, S.M. (2014) Carnivores, culture					
455	and 'contagious conflict': Multiple factors influence perceived problems with					
456	carnivores in Tanzania's Ruaha landscape. Biological Conservation, 178, 19-					
457	27.					
458	Everatt, K.T., Andresen, L. & Somers, M.J. (2014) Trophic scaling and occupancy					
459	analysis reveals a lion population limited by top-down anthropogenic pressure					
460	in the Limpopo National Park, Mozambique. PLoS ONE, 9, e99389.					
461	Frankham, R., Bradshaw, C.J.A. & Brook, B.W. (2014) Genetics in conservation					
462	management: Revised recommendations for the 50/500 rules, Red List criteria					
463	and population viability analyses. <i>Biological Conservation</i> , 170 , 56-63.					
464	Gelman, A. & Hill, J. (2007) Data analysis using regression and					
465	multilevel/hierarchical models. Cambridge University Press, New York.					
466	Hayward, M.W. & Kerley, G.I.H. (2005) Prey preferences of the lion (Panthera leo).					
467	<i>Journal of Zoology</i> , 267 , 309-322.					
468	Henschel, P., Petracca, L.S., Hunter, L.T.B., Kiki, M., Sewadé, C., Tehou, A. &					
469	Robinson, H.S. (2016) Determinants of distribution patterns and management					
470	needs in a critically endangered lion Panthera leo population. Frontiers in					
471	Ecology and Evolution, 4 .					
472	Hopcraft, J.G.C., Sinclair, A.R.E. & Packer, C. (2005) Planning for success: Serengeti					
473	lions seek prey accessibility rather than abundance. Journal of Animal					
474	<i>Ecology</i> , 74, 559-566.					
475	Knapp, E.J., Peace, N. & Bechtel, L. (2017) Poachers and poverty: assessing					
476	objective and subjective measures of poverty among illegal hunters outside					
477	Ruaha National Park, Tanzania. Conservation and Society, 15, 24.					
478	Kuo, L. & Mallick, B. (1998) Variable selection for regression models. <i>Sankhyā: The</i>					
479	Indian Journal of Statistics, 60 , 65-81.					
480	Le Saout, S., Hoffmann, M., Shi, Y.C., Hughes, A., Bernard, C., Brooks, T.M.,					
481	Bertzky, B., Butchart, S.H.M., Stuart, S.N., Badman, T. & Rodrigues, A.S.L.					
482	(2013) Protected areas and effective biodiversity conservation. <i>Science</i> , 342 ,					
483	803-805.					
484	Lindsey, P.A., Petracca, L.S., Funston, P.J., Bauer, H., Dickman, A., Everatt, K.,					
485	Flyman, M., Henschel, P., Hinks, A.E., Kasıkı, S., Loveridge, A., Macdonald,					
486	D.W., Mandisodza, R., Mgoola, W., Miller, S.M., Nazerali, S., Siege, L.,					
487	Useb, K. & Hunter, L.T.B. (2017) The performance of African protected					
488	areas for lions and their prey. <i>Biological Conservation</i> , 209 , 137-149.					
489	Lobora, A.L., Nahonyo, C.L., Munishi, L.K., Caro, T., Foley, C. & Beale, C.M.					
490	(2017) Modelling habitat conversion in miombo woodlands: insights from					
491	I anzania. Journal of land use science, 12, 391-403.					
492	Loveriage, A.J., Hemson, G., Davidson, Z. & Macdonald, D. (2010) African lions on					
495	the edge: reserve boundaries as "attractive sinks". Biology and conservation of					
494	wua reitas (eds D.w. Macdonaid & A.J. Loveridge), pp. 283-304. Oxford					
495	University Press, New York.					

496	Loveridge, A.J., Valeix, M., Elliot, N.B. & Macdonald, D.W. (2016) The landscape of						
497	anthropogenic mortality: how African lions respond to spatial variation in risk.						
498	Journal of Applied Ecology, 54, 815-825.						
499	MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Andrew Royle, J. &						
500	Langtimm, C.A. (2002) Estimating site occupancy rates when detection						
501	probabilities are less than one. <i>Ecology</i> , 83 , 2248-2255.						
502	MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L. & Hines, J.E.						
503	(2006) Occupancy estimation and modeling. Inferring patterns and dynamics						
504	of species occurrence. Elsevier Inc.						
505	Moll, R.J., Kilshaw, K., Montgomery, R.A., Abade, L., Campbell, R.D., Harrington,						
506	L.A., Millspaugh, J.J., Birks, J.D.S. & Macdonald, D.W. (2016) Clarifying						
507	habitat niche width using broad-scale, hierarchical occupancy models: a case						
508	study with a recovering mesocarnivore. Journal of Zoology, 300 , 177-185.						
509	Nowell, K. & Jackson, P. (1996) Wild Cats: Status Survey and Conservation Action						
510	Plan. IUCN/SSC Cat Specialist Group, Gland, Switzerland and Cambridge,						
511	UK.						
512	Oriol-Cotterill, A., Macdonald, D.W., Valeix, M., Ekwanga, S. & Frank, L.G. (2015)						
513	Spatiotemporal patterns of lion space use in a human-dominated landscape.						
514	Animal Behaviour. 101. 27-39.						
515	Owen-Smith, N. & Mills, M.G.L. (2008) Predator-prey size relationships in an						
516	African large-mammal food web. <i>Journal of Animal Ecology</i> , 77 , 173-183.						
517	Pekel, JF., Cottam, A., Gorelick, N. & Belward, A.S. (2016) High-resolution						
518	mapping of global surface water and its long-term changes. <i>Nature</i> , 540 , 418.						
519	Plummer, M. (2003) JAGS: a program for analysis of Bayesian graphical models						
520	using Gibbs sampling. Proceedings of the 3rd International Workshop on						
521	Distributed Statistical Computing. Vienna, Austria.						
522	PRB (2016) 2016 World population data sheet with a special focus on human needs						
523	and sustainable resources. (ed. P.R. Bureau). Washington.						
524	OGIS Development Team (2018) OGIS Geographic Information System. Open						
525	Source Geospatial Foundation Project. http://ggis.osgeo.org						
526	Riggio, J., Jacobson, A., Dollar, L., Bauer, H., Becker, M., Dickman, A., Funston, P.,						
527	Groom, R., Henschel, P., Iongh, H., Lichtenfeld, L. & Pimm, S. (2012) The						
528	size of savannah Africa: a lion's (Panthera leo) view. Biodiversity and						
529	Conservation, 1-19.						
530	Ripple, W.J., Newsome, T.M., Wolf, C., Dirzo, R., Everatt, K.T., Galetti, M.,						
531	Hayward, M.W., Kerley, G.I., Levi, T., Lindsey, P.A., Macdonald, D.W.,						
532	Malhi, Y., Painter, L.E., Sandom, C.J., Terborgh, J. & Van Valkenburgh, B.						
533	(2015) Collapse of the world's largest herbivores. Sci Adv, 1, e1400103.						
534	Rosenblatt, E., Creel, S., Becker, M.S., Merkle, J., Mwape, H., Schuette, P. &						
535	Simpamba, T. (2016) Effects of a protection gradient on carnivore density and						
536	survival: an example with leopards in the Luangwa valley, Zambia. <i>Ecology</i>						
537	and Evolution, 6 , 3772-3785.						
538	Royle, J.A. & Dorazio, R.M. (2008) <i>Hierarchical modeling and inference in ecology:</i>						
539	The analysis of data from populations, metapopulations and communities.						
540	Academic Press, San Diego, California.						
541	Seber, G.A. (1992) A review of estimating animal abundance II. <i>International</i>						
542	Statistical Review/Revue Internationale de Statistique. 129-166.						
543	Sosovele, H. & Ngwale, J.J. (2002) Socio-economic root causes of the loss of						
544	biodiversity in the Ruaha catchment area.						
545	Su, Y.S. & Yajima, M. (2012) R2jags: a package for running jags from R.						

546 547	Tacutu, R., Craig, T., Budovsky, A., Wuttke, D., Lehmann, G., Taranukha, D., Costa,						
547 548	Resources: integrated databases and tools for the biology and genetics of						
549	ageing. Nucleic Acids Res, 41 , D1027-1033.						
550	TAWIRI (2009) Tanzania carnivore conservation action plan. (eds Sarah M. Durant.						
551	Charles Foley, Alex Lobora, Maurus Msuha, SimonMduma, Lara Foley & R.						
552	Mosha). Arusha.						
553	Townshend, J.R.G., Carroll, M., Dimiceli, C., Sohlberg, R., Hansen, M. & DeFries,						
554	R. (2011) Vegetation Continuous Fields MOD44B. 2001 Percent Tree Cover.						
555	University of Maryland, College Park, Maryland, 2001.						
556	Tyre, A.J., Tenhumberg, B., Field, S.A., Niejalke, D., Parris, K. & Possingham, H.P.						
557	(2003) Improving precision and reducing bias in biological surveys:						
558	Estimating false-negative error rates. <i>Ecological Applications</i> , 13 , 1790-1801.						
559	Valeix, M., Loveridge, A.J. & Macdonald, D.W. (2012) Influence of prey dispersion						
560	on territory and group size of African lions: a test of the resource dispersion						
561	hypothesis. <i>Ecology</i> , 93 , 2490-2496.						
562	van Vliet, N., Cornelis, D., Beck, H., Lindsey, P., Nasi, R., LeBel, S., Moreno, J.,						
563	Fragoso, J. & Jori, F. (2016) Meat from the wild: extractive uses of wildlife						
564	and alternatives for sustainability. Current Trends in Wildlife Research (eds R.						
565	Mateo, B. Arroyo & J.T. Garcia), pp. 225-265. Springer International						
566	Publishing, Cham.						
567	Weise, F.J., Hayward, M.W., Casillas Aguirre, R., Tomeletso, M., Gadimang, P.,						
568	Somers, M.J. & Stein, A.B. (2018). Size, shape and maintenance matter: A						
569	critical appraisal of a global carnivore conflict mitigation strategy – Livestock						
570	protection kraals in northern Botswana. Biol. Conserv. 225, 88–97.						
571	Wittemyer, G., Elsen, P., Bean, W.T., Burton, A.C.O. & Brashares, J.S. (2008)						
572	Accelerated human population growth at protected area edges. Science, 321,						
573	123-126.						
574	Woodroffe, R. & Ginsberg, J.R. (1998) Edge Effects and the Extinction of						
575	Populations Inside Protected Areas. Science, 280, 2126-2128.						
576	Woodroffe, R. & Frank, L.G. (2005) Lethal control of African lions (Panthera leo):						
577	Local and regional population impacts. Anim. Conserv. 8, 91–98.						
578	Zuur, A.F., Ieno, E.N. & Elphick, C.S. (2010) A protocol for data exploration to avoid						
579	common statistical problems. <i>Methods in Ecology and Evolution</i> , 1 , 3-14.						
580							
581	Acknowledgments						

- Acknowledgments
- 582 We acknowledge CNPQ-Brasil, Rufford Small Grants, Cleveland Metroparks Zoo/
- 583 Cleveland Zoological Society, the UK Natural Environment Research Council,
- 584 IdeaWild, Lady Margaret Hall, WildCRU, and Ruaha Carnivore Project. R.J.M. was
- 585 supported by NSF Graduate Research Fellowship. L.A. thanks Christos Astaras,
- Cedric Tan, Sam Merson, and Nuno Faria. We thank two anonymous reviewers for 586
- 587 comments that improved the manuscript.

588 Figure 1. Location of the study site, and distribution of camera-trap stations (blue 589 shaded circles) across the Ruaha landscape, southern Tanzania. 1-11 represents 590 sampling areas: 1. Mdonya; 2. Kwihala; 3. Msembe; 4. Mwagusi; 5. Lunda-Ilolo; 6. 591 Pawaga; 7. Lunda; 8. Idodi; 9. Malinzanga; 10. Nyamahana; 11. Magosi. The yellow 592 shaded circles represent the number of independent detections of lions (Panthera leo) 593 at each camera-trap station. Dark blue shaded circles correspond to camera-trap stations 594 set up in year 1 (Y1) and light blue circles correspond to camera-trap stations set up in 595 year 2 (Y2).

596

597 **Figure 2.** Set of covariates hypothesised to influence lion (*Panthera leo*) site use across

598 Tanzania's Ruaha landscape. A. Distance to households; B. Distance to ranger posts;

599 C. Vegetation continuous fields/vegetation cover; D. Density of people per household.

600 Biomass index of large and medium prey (CPUE), and trail type not represented here.

601

Figure 3. Predicted association of the hypothesised covariates to the probability of site use (A-F) of lions (*Panthera leo*). The solid lines represent the posterior means, and the light grey lines represent the estimated uncertainty based on a random posterior sample of 200 iterations.

606

607

- 608
- 609
- 610

611

- **Table 1.** Covariates predicted to influence lion site use in the Ruaha landscape,
- 615 southern Tanzania. Ψ . probability of site use; *P*. probability of detection

			Expected Influence
Covariates	Model type	Covariate Class	on Site Use
Density of humans	Ψ	Anthropogenic	-
Density of livestock	Ψ	Anthropogenic	-
Distance to Great Ruaha	Ψ	Natural	-
Distance to household	Ψ	Anthropogenic	+
Distance to ranger post	Ψ	Anthropogenic	-
Distance to surface water	Ψ	Natural	-
Large prey	Ψ	Natural	+
Medium prey	Ψ	Natural	+
Vegetation cover	Ψ	Natural	+
Trail type	Р	Natural	+

626 **Table 2.** Total number of independent lion detections per sampling areas used to

627 model lion site use in the Ruaha landscape, southern Tanzania. Σ of all independent

628 events. CT effort (days): Number of active days of survey; each day = 24h.

629

Land-management	Area CT effort (days		s) Σ^* Events	
	Kwihala	196	1	
	Lunda-Ilolo	196	0	
National Park	Mdonya	226	5	
	Msembe	7,447	136	
	Mwagusi	173	1	
	Lunda	867	14	
Wildlife Management Area	Pawaga	738	0	
	Idodi	674	0	
Village land	Magosi	656	0	
	Malinzanga	718	0	
	Nyamahana	1,059	0	

630			
631			
632			
633			
634			
635			
636			
637			

- **Table 3.** Total number of independent prey detections according to each land use
- 639 category surveyed. RNP: Ruaha National Park; WMA: Wildlife Management Area;
- 640 VL: village lands

Smaalag	Land-management			
Species	RNP	WMA	VL 15	
Bushbuck	79	48		
Buffalo	75	4	0	
Bush pig	33	16	9	
Duiker	199	71	61	
Eland	46	3	0	
Elephant	2,893	509	0	
Giraffe	1,407	217	0	
Grant's gazelle	59	37	0	
Greater kudu	910	212	130	
Hippo	392	1	0	
Impala	6,779	1,849	34	
Lesser kudu	213	113	46	
Warthog	181	50	1	
Waterbuck	39	5	0	
Zebra	404	3	0	

Table 4. Posterior means, standard deviations, 95% credible intervals (C.I.), and Bayesian inclusion parameters (w_c) of lion site use models fit to camera trap data from the Ruaha landscape, southern Tanzania. Note that β_1 is absent since it was associated with the reference trail type (animal trail) and was thus set to zero.

Covariate	Parameter	Mean	SD	95% C.I.	Wc
Medium prey	α_1	1.8	1.05	0.03, 4.12	0.59
Large prey	α_2	3.19	1.11	1.01, 4.90	0.98
Distance to household	α3	2.61	1.84	-2.04, 4.89	0.61
Distance to ranger post	α_4	0.97	2.08	-3.38, 4.53	0.41
Vegetation cover	α5	1.16	0.78	-0.08, 3.06	0.39
Distance to surface water	α ₆	-1.53	1.74	-4.55, 2.15	0.42
Density of humans	α ₇	-2.18	1.67	-4.86, 0.81	0.38
Mean random intercept	$\alpha_{\rm site}$	-4.77	3.47	-12.35, 1.19	-
Intercept	eta_0	-0.57	1.13	-3.25, 0.75	-
Trail type.N	β_2	-1.97	0.84	-3.89, -0.61	0.27
Trail type.RD	β_3	0.28	0.33	-0.37, 0.88	0.27
CTs occupied	Ψ	42.24	4.09	37.00, 53.00	-