1,473 research outputs found

    Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article

    Get PDF
    A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling

    Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure

    Get PDF
    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition

    Shape complexity and fractality of fracture surfaces of swelled isotactic polypropylene with supercritical carbon dioxide

    Full text link
    We have investigated the fractal characteristics and shape complexity of the fracture surfaces of swelled isotactic polypropylene Y1600 in supercritical carbon dioxide fluid through the consideration of the statistics of the islands in binary SEM images. The distributions of area AA, perimeter LL, and shape complexity CC follow power laws p(A)∼A−(μA+1)p(A)\sim A^{-(\mu_A+1)}, p(L)∼L−(μL+1)p(L)\sim L^{-(\mu_L+1)}, and p(C)∼C−(ν+1)p(C)\sim C^{-(\nu+1)}, with the scaling ranges spanning over two decades. The perimeter and shape complexity scale respectively as L∼AD/2L\sim A^{D/2} and C∼AqC\sim A^q in two scaling regions delimited by A≈103A\approx 10^3. The fractal dimension and shape complexity increase when the temperature decreases. In addition, the relationships among different power-law scaling exponents μA\mu_A, μB\mu_B, ν\nu, DD, and qq have been derived analytically, assuming that AA, LL, and CC follow power-law distributions.Comment: RevTex, 6 pages including 7 eps figure

    High-temperature phonons in h-BN: momentum-resolved vibrational spectroscopy and theory

    Full text link
    Vibrations in materials and nanostructures at sufficiently high temperatures result in anharmonic atomic displacements, which leads to new phenomena such as thermal expansion and multiphonon scattering processes, with a profound impact on temperature-dependent material properties including thermal conductivity, phonon lifetimes, nonradiative electronic transitions, and phase transitions. Nanoscale momentum-resolved vibrational spectroscopy, which has recently become possible on monochromated scanning-transmission-electron microscopes, is a unique method to probe the underpinnings of these phenomena. Here we report momentum-resolved vibrational spectroscopy in hexagonal boron nitride at temperatures of 300, 800, and 1300 K across three Brillouin zones (BZs) that reveals temperature-dependent phonon energy shifts and demonstrates the presence of strong Umklapp processes. Density-functional-theory calculations of temperature-dependent phonon self-energies reproduce the observed energy shifts and identify the contributing mechanisms.Comment: 21 pages, 4 figures, 2 tables, 3 supplemental figures, 3 supplemental table

    Test and Analysis Correlation of a Large-Scale, Orthogrid-Stiffened Metallic Cylinder without Weld Lands

    Get PDF
    The NASA Engineering Safety Center (NESC) Shell Buckling Knockdown Factor Project (SBKF) was established in 2007 by the NESC with the primary objective to develop analysis-based buckling design factors and guidelines for metallic and composite launch-vehicle structures.1 A secondary objective of the project is to advance technologies that have the potential to increase the structural efficiency of launch-vehicles. The SBKF Project has determined that weld-land stiffness discontinuities can significantly reduce the buckling load of a cylinder. In addition, the welding process can introduce localized geometric imperfections that can further exacerbate the inherent buckling imperfection sensitivity of the cylinder. Therefore, single-piece barrel fabrication technologies can improve structural efficiency by eliminating these weld-land issues. As part of this effort, SBKF partnered with the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center (LaRC), the Mechanical and Fabrication Branch at NASA Marshall Space Flight Center (MSFC), and ATI Forged Products to design and fabricate an 8-ft-diameter orthogrid-stiffened seamless metallic cylinder. The cylinder was subjected to seven subcritical load sequences (load levels that are not intended to induce test article buckling or material failure) and one load sequence to failure. The purpose of this test effort was to demonstrate the potential benefits of building cylindrical structures with no weld lands using the flow-formed manufacturing process. This seamless barrel is the ninth 8-ft-diameter metallic barrel and the first single-piece metallic structure to be tested under this program

    The Equivalence Principle and the Constants of Nature

    Full text link
    We briefly review the various contexts within which one might address the issue of ``why'' the dimensionless constants of Nature have the particular values that they are observed to have. Both the general historical trend, in physics, of replacing a-priori-given, absolute structures by dynamical entities, and anthropic considerations, suggest that coupling ``constants'' have a dynamical nature. This hints at the existence of observable violations of the Equivalence Principle at some level, and motivates the need for improved tests of the Equivalence Principle.Comment: 12 pages; invited talk at the ISSI Workshop on the Nature of Gravity: Confronting Theory and Experiment in Space, Bern, Switzerland, 6-10 October 2008; to appear in Space Science Review

    Health and disease markers correlate with gut microbiome composition across thousands of people.

    Get PDF
    Variation in the human gut microbiome can reflect host lifestyle and behaviors and influence disease biomarker levels in the blood. Understanding the relationships between gut microbes and host phenotypes are critical for understanding wellness and disease. Here, we examine associations between the gut microbiota and ~150 host phenotypic features across ~3,400 individuals. We identify major axes of taxonomic variance in the gut and a putative diversity maximum along the Firmicutes-to-Bacteroidetes axis. Our analyses reveal both known and unknown associations between microbiome composition and host clinical markers and lifestyle factors, including host-microbe associations that are composition-specific. These results suggest potential opportunities for targeted interventions that alter the composition of the microbiome to improve host health. By uncovering the interrelationships between host diet and lifestyle factors, clinical blood markers, and the human gut microbiome at the population-scale, our results serve as a roadmap for future studies on host-microbe interactions and interventions

    Genetic Predisposition Impacts Clinical Changes in a Lifestyle Coaching Program.

    Get PDF
    Both genetic and lifestyle factors contribute to an individual\u27s disease risk, suggesting a multi-omic approach is essential for personalized prevention. Studies have examined the effectiveness of lifestyle coaching on clinical outcomes, however, little is known about the impact of genetic predisposition on the response to lifestyle coaching. Here we report on the results of a real-world observational study in 2531 participants enrolled in a commercial Scientific Wellness program, which combines multi-omic data with personalized, telephonic lifestyle coaching. Specifically, we examined: 1) the impact of this program on 55 clinical markers and 2) the effect of genetic predisposition on these clinical changes. We identified sustained improvements in clinical markers related to cardiometabolic risk, inflammation, nutrition, and anthropometrics. Notably, improvements in HbA1c were akin to those observed in landmark trials. Furthermore, genetic markers were associated with longitudinal changes in clinical markers. For example, individuals with genetic predisposition for higher LDL-C had a lesser decrease in LDL-C on average than those with genetic predisposition for average LDL-C. Overall, these results suggest that a program combining multi-omic data with lifestyle coaching produces clinically meaningful improvements, and that genetic predisposition impacts clinical responses to lifestyle change
    • …
    corecore