2,030 research outputs found
Can the palatability of healthy, satiety-promoting foods increase with repeated exposure during weight loss?
Repeated exposure to sugary, fatty, and salty foods often enhances their appeal. However, it is unknown if exposure influences learned palatability of foods typically promoted as part of a healthy diet. We tested whether the palatability of pulse containing foods provided during a weight loss intervention which were particularly high in fiber and low in energy density would increase with repeated exposure. At weeks 0, 3, and 6, participants (n = 42; body mass index (BMI) 31.2 ± 4.3 kg/m²) were given a test battery of 28 foods, approximately half which had been provided as part of the intervention, while the remaining half were not foods provided as part of the intervention. In addition, about half of each of the foods (provided as part or not provided as part of the intervention) contained pulses. Participants rated the taste, appearance, odor, and texture pleasantness of each food, and an overall flavor pleasantness score was calculated as the mean of these four scores. Linear mixed model analyses showed an exposure type by week interaction effect for taste, texture and overall flavor pleasantness indicating statistically significant increases in ratings of provided foods in taste and texture from weeks 0 to 3 and 0 to 6, and overall flavor from weeks 0 to 6. Repeated exposure to these foods, whether they contained pulses or not, resulted in a ~4% increase in pleasantness ratings. The long-term clinical relevance of this small increase requires further study.T32 AT000815 - NCCIH NIH HH
Oceanographic structure drives the assembly processes of microbial eukaryotic communities
This is the final version. Available on open access from Springer Nature via the DOI in this recordArctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.This study was conducted as part of the MALINA Scientific Program led by MB and funded by the French National Research Agency (ANR), INSU-CNRS (Institut National des Sciences de l'Univers – Centre National de la Recherche Scientifique), CNES (Centre National d'Etudes Spatiales) and ESA (European Space Agency). Computing support was provided by CLUMEQ/Compute Canada. Additional funding was provided by the Natural Science and Engineering Council (NSERC) of Canada to CL, and Fond Québécois de Recherches Nature et Technologies (FQRNT) for Québec Océan, and is a contribution to ArcticNet. AF, AMa and AMo received scholarships from the Canadian Excellence Research Chair (CERC) in remote sensing of Canada’s new Arctic frontier, and JC was supported by FQRNT and the EnviroNorth (CREATE program from NSERC)
Age-related changes in the energy of human mesenchymal stem cells
Aging is a physiological process that leads to a higher risk for the most devastating diseases. There are a number of theories of human aging proposed, and many of them are directly or indirectly linked to mitochondria. Here, we used mesenchymal stem cells (MSCs) from young and older donors to study age-related changes in mitochondrial metabolism. We have found that aging in MSCs is associated with a decrease in mitochondrial membrane potential and lower NADH levels in mitochondria. Mitochondrial DNA content is higher in aged MSCs, but the overall mitochondrial mass is decreased due to increased rates of mitophagy. Despite the higher level of ATP in aged cells, a higher rate of ATP consumption renders them more vulnerable to energy deprivation compared to younger cells. Changes in mitochondrial metabolism in aged MSCs activate the overproduction of reactive oxygen species in mitochondria which is compensated by a higher level of the endogenous antioxidant glutathione. Thus, energy metabolism and redox state are the drivers for the aging of MSCs/mesenchymal stromal cells
Verification and Control of Partially Observable Probabilistic Real-Time Systems
We propose automated techniques for the verification and control of
probabilistic real-time systems that are only partially observable. To formally
model such systems, we define an extension of probabilistic timed automata in
which local states are partially visible to an observer or controller. We give
a probabilistic temporal logic that can express a range of quantitative
properties of these models, relating to the probability of an event's
occurrence or the expected value of a reward measure. We then propose
techniques to either verify that such a property holds or to synthesise a
controller for the model which makes it true. Our approach is based on an
integer discretisation of the model's dense-time behaviour and a grid-based
abstraction of the uncountable belief space induced by partial observability.
The latter is necessarily approximate since the underlying problem is
undecidable, however we show how both lower and upper bounds on numerical
results can be generated. We illustrate the effectiveness of the approach by
implementing it in the PRISM model checker and applying it to several case
studies, from the domains of computer security and task scheduling
Aerosol nucleation over oceans and the role of galactic cosmic rays
International audienceWe investigate formation of sulfate aerosol in the marine troposphere from neutral and charged nucleation of H2SO4 and H2O. A box model of neutral and charged aerosol processes is run on a grid covering the oceans. Input data are taken from a model of galactic cosmic rays in the atmosphere, and from global chemistry and transport models. We find a weak aerosol production over the tropical oceans in the lower and middle troposphere, and a stronger production at higher latitudes, most notably downwind of industrial regions. The highest aerosol production, however, occurs in the upper troposphere, in particular in the tropics. This finding supports the proposition by which non-sea salt marine boundary layer aerosol in tropical regions does not form in situ, but nucleates in the upper troposphere from convectively lifted and cloud processed boundary layer air rich in aerosol precursor gases, from where it descends in subsiding air masses compensating convection. Convection of boundary layer air also appears to drive the formation of condensation nuclei in the tropical upper troposphere which maintains the stratospheric aerosol layer in the absence of volcanic activity. Neutral nucleation contributes only marginally to aerosol production in our simulations. This highlights the importance of charged binary and of ternary nucleation involving ammonia for aerosol formation. In clean marine regions however, ammonia concentrations seem too low to support ternary nucleation, making binary nucleation from ions a likely pathway for sulfate aerosol formation. On the other hand, our analysis indicates that the variation of ionization by galactic cosmic rays over the decadal solar cycle does not entail a response in aerosol production and cloud cover via the second indirect aerosol effect that would explain observed variations in global cloud cover. We estimate that the variation in radiative forcing resulting from a response of clouds to the change in galactic cosmic ray ionization and subsequent aerosol production over the decadal solar cycle is smaller than the concurrent variation of total solar irradiance
The Casiquiare river acts as a corridor between the Amazonas and Orinoco river basins: biogeographic analysis of the genus Cichla
The Casiquiare River is a unique biogeographic corridor between the Orinoco and Amazonas basins. We investigated the importance of this connection for Neotropical fishes using peacock cichlids ( Cichla spp.) as a model system. We tested whether the Casiquiare provides a conduit for gene flow between contemporary populations, and investigated the origin of biogeographic distributions that span the Casiquiare. Using sequences from the mitochondrial control region of three focal species ( C. temensis , C. monoculus , and C. orinocensis ) whose distributions include the Amazonas, Orinoco, and Casiquiare, we constructed maximum likelihood phylograms of haplotypes and analyzed the populations under an isolation-with-migration coalescent model. Our analyses suggest that populations of all three species have experienced some degree of gene flow via the Casiquiare. We also generated a mitochondrial genealogy of all Cichla species using >2000 bp and performed a dispersal-vicariance analysis (DIVA) to reconstruct the historical biogeography of the genus. This analysis, when combined with the intraspecific results, supports two instances of dispersal from the Amazonas to the Orinoco. Thus, our results support the idea that the Casiquiare connection is important across temporal scales, facilitating both gene flow and the dispersal and range expansion of species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79059/1/j.1365-294X.2010.04540.x.pd
Components of multifractality in the Central England Temperature anomaly series
We study the multifractal nature of the Central England Temperature (CET)
anomaly, a time series that spans more than 200 years. The series is analyzed
as a complete data set and considering a sliding window of 11 years. In both
cases, we quantify the broadness of the multifractal spectrum as well as its
components defined by the deviations from the Gaussian distribution and the
influence of the dependence between measurements. The results show that the
chief contribution to the multifractal structure comes from the dynamical
dependencies, mainly the weak ones, followed by a residual contribution of the
deviations from Gaussianity. However, using the sliding window, we verify that
the spikes in the non-Gaussian contribution occur at very close dates
associated with climate changes determined in previous works by component
analysis methods. Moreover, the strong non-Gaussian contribution found in the
multifractal measures from the 1960s onwards is in agreement with global
results very recently proposed in the literature.Comment: 21 pages, 10 figure
Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation
Sporadic cases account for 90-95% of all patients with Parkinson's Disease (PD). Atypical Parkinsonism comprises approximately 20% of all patients with parkinsonism. Progressive Supranuclear Palsy (PSP) belongs to the atypical parkinsonian diseases and is histopathologically classified as a tauopathy. Here, we report that mesenchymal stem cells (MSCs) derived from the bone marrow of patients with PSP exhibit mitochondrial dysfunction in the form of decreased membrane potential and inhibited NADH-dependent respiration. Furthermore, mitochondrial dysfunction in PSP-MSCs led to a significant increase in mitochondrial ROS generation and oxidative stress, which resulted in decrease of major cellular antioxidant GSH. Additionally, higher basal rate of mitochondrial degradation and lower levels of biogenesis were found in PSP-MSCs, together leading to a reduction in mitochondrial mass. This phenotype was biologically relevant to MSC stemness properties, as it heavily impaired their differentiation into adipocytes, which mostly rely on mitochondrial metabolism for their bioenergetic demand. The defect in adipogenic differentiation was detected as a significant impairment of intracellular lipid droplet formation in PSP-MSCs. This result was corroborated at the transcriptional level by a significant reduction of PPARÎł and FABP4 expression, two key genes involved in the adipogenic molecular network. Our findings in PSP-MSCs provide new insights into the etiology of 'idiopathic' parkinsonism, and confirm that mitochondrial dysfunction is important to the development of parkinsonism, independent of the type of the cell
Race differences in predictors of weight gain among a community sample of smokers enrolled in a randomized controlled trial of a multiple behavior change intervention.
African Americans have disproportionate rates of post-cessation weight gain compared to non-Hispanic whites, but few studies have examined this weight gain in a multiracial sample of smokers receiving evidence-based treatment in a community setting. We examined race differences in short-term weight gain during an intervention to foster smoking cessation plus weight management. Data were drawn from the Best Quit Study, a randomized controlled trial conducted via telephone quitlines across the U.S. from 2013 to 2017. The trial tested the effects on cessation and weight gain prevention of adding a weight control intervention either simultaneously with or sequentially after smoking cessation treatment. African Americans (n = 665) and whites (n = 1723) self-reported smoking status and weight during ten intervention calls. Random effects longitudinal modeling was used to examine predictors of weight change over the intervention period (average 16 weeks). There was a significant race Ă— treatment effect; in the simultaneous group, weight increased for African Americans at a faster rate compared to whites (b = 0.302, SE = 0.129, p \u3c 0.05), independent of smoking status, age, baseline obesity, and education. After stratifying the sample, the effect of treatment group differed by race. Education level attenuated the rate of weight gain for African Americans in the simultaneous group, but not for whites. African Americans receiving smoking and weight content simultaneously gained weight faster than whites in the same group; however, the weight gain was slower for African Americans with higher educational attainment. Future studies are needed to understand social factors associated with treatment receptivity that may influence weight among African American smokers
Substrate oxidation and energy expenditure in athletes and nonathletes consuming isoenergetic high- and low-fat diets
Changes in substrate oxidation with isoenergetic high-carbohydrate (HC) and high-fat (HF) diets in male nonathletic subjects, aerobically trained athletes, and weight-trained athletes were examined in a crossover study. A whole-room respiration chamber was used to measure 24-h energy expenditure (EE) and substrate oxidation with control, He, or HF diets for 7 d. The nonathletic group had higher 24-h EE (P \u3c 0.05), exercise EE (P \u3c 0.03), and resting metabolic rate (P \u3c 0.04) than did the aerobically trained athletes when these measurements were corrected for lean body mass. Fat oxidation was significantly correlated with lean body mass and diet. However, athletic status had no effect on substrate oxidation. Carbohydrate oxidation across groups increased acutely by 23% after 24 h of the HC diet (P \u3c 0.0001). Carbohydrate balance increased significantly over time with the HC diet (P \u3c 0.002) and decreased acutely after return to the control diet (P \u3c 0.0001). With the HF diet, carbohydrate balance increased and was significantly different from balance with the control diet by day 7 (P \u3c 0.03). Fat balance decreased significantly with both the HF (P \u3c 0.04) and HC (P = 0.0075) diets by day 7. Carbohydrate oxidation correlated with carbohydrate intake with both the control (r = 0.61, P \u3c 0.01) and HC diets (r = 0.59, P \u3c 0.02), but not the HF diet. Fat oxidation was not correlated with fat intake. In conclusion, substrate oxidation in a respiration chamber is significantly affected by diet, but not by prior athletic training
- …