304 research outputs found

    Synthesis and complexes of a constrained-cavity Schiff-base dipyrrin macrocycle

    Get PDF

    Controlling uranyl oxo group interactions to group 14 elements using polypyrrolic Schiff-base macrocyclic ligands

    Get PDF
    Heterodinuclear uranyl/group 14 complexes of the aryl- and anthracenyl-linked Schiff-base macrocyclic ligands LMe and LA were synthesised by reaction of UO2(H2L) with M{N(SiMe3)2}2 (M = Ge, Sn, Pb). For complexes of the anthracenyl-linked ligand (LA) the group 14 metal sits out of the N4-donor plane by up to 0.7 Å resulting in relatively short M⋯OUO distances which decrease down the group; however, the solid state structures and IR spectroscopic analyses suggest little interaction occurs between the oxo and group 14 metal. In contrast, the smaller aryl-linked ligand (LMe) enforces greater interaction between the metals; only the PbII complex was cleanly accessible although this complex was relatively unstable in the presence of HN(SiMe3)2 and some organic oxidants. In this case, the equatorial coordination of pyridine-N-oxide causes a 0.08 Å elongation of the endo UO bond and a clear interaction of the uranyl ion with the Pb(II) cation in the second donor compartment

    Tuneable separation of gold by selective precipitation using a simple and recyclable diamide

    Get PDF
    The separation of metals from electronic waste is an enduring technological and societal challenge, and new metal extraction, refining and recycling solutions are needed. Here the authors report a recyclable and tuneable chemical reagent that separates valuable metals such as gold by direct and selective precipitation from various acidic, mixed-metal solutions of relevance to extraction and recycling industries

    Uranyl to Uranium(IV) Conversion through Manipulation of Axial and Equatorial Ligands

    Get PDF
    The controlled manipulation of the axial oxo and equatorial halide ligands in the uranyl dipyrrin complex, UO2Cl(L), allows the uranyl reduction potential to be shifted by 1.53 V into the range accessible to naturally occurring reductants that are present during uranium remediation and storage processes. Abstraction of the equatorial halide ligand to form the uranyl cation causes a 780 mV positive shift in the UV/UIV reduction potential. Borane functionalization of the axial oxo groups causes the spontaneous homolysis of the equatorial U–Cl bond and a further 750 mV shift of this potential. The combined effect of chloride loss and borane coordination to the oxo groups allows reduction of UVI to UIV by H2 or other very mild reductants such as Cp*2Fe. The reduction with H2 is accompanied by a B–C bond cleavage process in the oxo-coordinated borane

    Challenges and opportunities in the recovery of gold from electronic waste

    Get PDF
    Rapid global technological development has led to the rising production of electronic waste that presents both challenges and opportunities in its recycling. In this review, we highlight the value of metal resources in the printed circuit boards (PCBs) commonly found in end-of-life electronics, the differences between primary (ore) mining applications and secondary (‘urban’) mining, and the variety of metallurgical separations, in particular those that have the potential to selectively and sustainably recover gold from waste PCBs

    Role of the Meso Substituent in Defining the Reduction of Uranyl Dipyrrin Complexes

    Get PDF
    The uranyl complex UVIO2Cl(LMes) of the redox-active, acyclic dipyrrin–diimine anion LMes– [HLMes = 1,9-di-tert-butyl-imine-5-(mesityl)dipyrrin] is reported, and its redox property is explored and compared with that of the previously reported UVIO2Cl(LF) [HLF = 1,9-di-tert-butyl-imine-5-(pentafluorophenyl)dipyrrin] to understand the influence of the meso substituent. Cyclic voltammetry, electron paramagnetic resonance spectroscopy, and density functional theory studies show that the alteration from an electron-withdrawing meso substituent to an electron-donating meso substituent on the dipyrrin ligand significantly modifies the stability of the products formed after reduction. For UVIO2Cl(LMes), the formation of a diamond-shaped, oxo-bridged uranyl(V) dimer, [UVO2(LMes)]2 is seen, whereas in contrast, for UVIO2Cl(LF), only ligand reduction occurs. Computational modeling of these reactions shows that while ligand reduction followed by chloride dissociation occurs in both cases, ligand-to-metal electron transfer is favorable for UVIO2Cl(LMes) only, which subsequently facilitates uranyl(V) dimerization

    Reducing the Competition: A Dual-Purpose Ionic Liquid for the Extraction of Gallium from Iron Chloride Solutions

    Get PDF
    The separation of gallium from iron by solvent extraction from chloride media is challenging because the anionic chloridometalates, FeCl4− and GaCl4−, display similar chemical properties. However, we report here that the selective separation of gallium from iron in HCl solution can be achieved using the dual-purpose ionic liquid methyltrioctylammonium iodide in a solvent extraction process. In this case, the reduction of Fe3+ to Fe2+ by the iodide counterion was found to inhibit Fe transport, facilitating quantitative Ga extraction by the ionic liquid with minimal Fe extraction from 2 M HCl

    Polynuclear alkoxy–zinc complexes of bowl-shaped macrocycles and their use in the copolymerisation of cyclohexene oxide and CO2

    Get PDF
    The reactions between alcohols and the tetranuclear ethyl-Zn complexes of an ortho-phenylene-bridged polypyrrole macrocycle, Zn4Et4(L1) 1 and the related anthracenyl-bridged macrocyclic complex, Zn4Et4(THF)4(L2) 2 have been studied. With long-chain alcohols such as n-hexanol, the clean formation of the tetranuclear hexoxide complex Zn4(OC6H13)4(L1) 3 occurs. In contrast, the use of shorter-chain alcohols such as i-propanol results in the trinuclear complex Zn3(μ2-OiPr)2(μ3-OiPr)(HL1) 4 that arises from demetalation; this complex was characterised by X-ray crystallography. The clean formation of these polynuclear zinc clusters allowed a study of their use as catalysts in the ring-opening copolymerisation (ROCOP) reaction between cyclohexene oxide and CO2. In situ reactions involving the pre-catalyst 1 and n-hexanol formed the desired polymer with the best selectivity for polycarbonate (90%) at 30 atm CO2, whilst the activity and performance of pre-catalyst 2 was poor in comparison
    • …
    corecore