260 research outputs found

    Sexual dimorphisms in the dermal denticles of thelesser-spotted catshark, Scyliorhinus canicula (Linnaeus, 1758)

    Get PDF
    The dermal layers of several elasmobranch species have been shown to be sexually dimorphic. Generally, when this occurs the females have thicker dermal layers compared to those of males. This sexual dimorphism has been suggested to occur as a response to male biting during mating. Although male biting as a copulatory behaviour in Scyliorhinus canicula has been widely speculated to occur, only relatively recently has this behaviour been observed. Male S. canicula use their mouths to bite the female's pectoral and caudal fins as part of their pre-copulatory behaviour and to grasp females during copulation. Previous work has shown that female S. canicula have a thicker epidermis compared to that of males. The structure of the dermal denticles in females may also differ from that of males in order to protect against male biting or to provide a greater degree of friction in order to allow the male more purchase. This study reveals that the length, width and density of the dermal denticles of mature male and female S. canicula are sexually dimorphic across the integument in areas where males have been observed to bite and wrap themselves around females (pectoral fin, area posterior to the pectoral fin, caudal fin, and pelvic girdle). No significant differences in the dermal denticle dimensions were found in other body areas examined (head, dorsal skin and caudal peduncle). Sexually dimorphic dermal denticles in mature S. canicula could be a response to male biting/wrapping as part of the copulatory process

    Hollow Core Optical Fibre Based Gas Discharge Laser Systems

    Get PDF

    Web-based Elicitation of Human Perception on mixup Data

    Full text link
    Synthetic data is proliferating on the web and powering many advances in machine learning. However, it is not always clear if synthetic labels are perceptually sensible to humans. The web provides us with a platform to take a step towards addressing this question through online elicitation. We design a series of elicitation interfaces, which we release as \texttt{HILL MixE Suite}, and recruit 159 participants, to provide perceptual judgments over the kinds of synthetic data constructed during \textit{mixup} training: a powerful regularizer shown to improve model robustness, generalization, and calibration. We find that human perception does not consistently align with the labels traditionally used for synthetic points and begin to demonstrate the applicability of these findings to potentially increase the reliability of downstream models. We release all elicited judgments in a new data hub we call \texttt{H-Mix}

    Real-time extraction of the Madden-Julian oscillation using empirical mode decomposition and statistical forecasting with a VARMA model

    Get PDF
    A simple guide to the new technique of empirical mode decomposition (EMD) in a meteorological-climate forecasting context is presented. A single application of EMD to a time series essentially acts as a local high-pass filter. Hence, successive applications can be used to produce a bandpass filter that is highly efficient at extracting a broadband signal such as the Madden-Julian Oscillation (MJO). The basic EMD method is adapted to minimize end effects, such that it is suitable for use in real time. The EMD process is then used to efficiently extract the MJO signal from gridded time series of outgoing longwave radiation (OLR) data. A range of statistical models from the general class of vector autoregressive moving average (VARMA) models was then tested for their suitability in forecasting the MJO signal, as isolated by the EMD. A VARMA (5, 1) model was selected and its parameters determined by a maximum likelihood method using 17 yr of OLR data from 1980 to 1996. Forecasts were then made on the remaining independent data from 1998 to 2004. These were made in real time, as only data up to the date the forecast was made were used. The median skill of forecasts was accurate (defined as an anomaly correlation above 0.6) at lead times up to 25 days

    Double Pass Gain in Helium-Xenon Discharges in Hollow Optical Fibres at 3.5 μm

    Get PDF
    With recent advances in low-loss hollow core optical fibre technology [1], the concept of a flexible electrically pumped gas discharge laser has become a reality. Such a device would be capable of having a very narrow discharge tube, which has been shown to increase gain and output power in neutral noble gas lasers, while eliminating the need for long, rigorously straight glass tubes, a problem that has plagued past attempts to exploit this behaviour [2]. The narrow bore tubes have however made the discharge parameters harder to achieve, but recent work with DC-excited glow discharges provided the first indications of gain on the 3.11 μm, 3.37 μm and 3.51 μm Xenon transmission lines in fibres of over 1 m in length [3]. Here we continue with that work by carrying out a double pass experiment with these discharges, as a step towards a full laser cavity

    Scientific evidence on how organic food and farming contributes to sustainable food security

    Get PDF
    This briefing aims to summarise the most relevant recent scientific publications that critically assess the productivity and sustainability of organic farming methods. The rapid increase in the quantity of scientific literature on this topic reflects the growing importance of the sector as well as the need for accurate data and analysis to inform policy makers. There are currently 2.7 million organic-certified farmers (of which 350.000 are in Europe) who have committed to sustainable farming practices. Can organic food and farming be upscaled in order to contribute to sustainable food system and food security
    corecore