97 research outputs found

    White matter lesions in watershed territories studied with MRI and parenchymography: a comparative study

    Get PDF
    Brain aging affects an increasing segment of the population and the role of chronic cerebrovascular disease is considered to be one of the main parameters involved. For this purpose we compared retrospectively MRI data with digitized subtraction angiography (DSA) data in a group of 50 patients focusing onto the watershed area of the carotid artery vascular territories. In order to evaluate the presence of white matter lesions (WML) in the hemispheric watershed areas, coronal fluid-attenuated inversion-recovery or axial T2 weighted MRI images of patients with symptomatic cerebrovascular insufficiency areas were compared with the capillary phase of DSA studies in anterior-posterior projection. Presence of cerebrovascular occlusive disease was evaluated on DSA using North American symptomatic carotid endarterectomy trial criteria and including evaluation of collateral vascular supply. Pathological MRI findings in the region of the watershed territories correlated overall in 66% of cases with a defect or delayed filling on DSA. In the case of asymmetrical MRI findings, there was a pathological finding of the capillary phase in the watershed area in 92% of DSA studies. Hypoperfusion in the capillary phase of the watershed area as seen on DSA correlated with the stenosis degree of the concerned carotid artery. Our findings suggest that asymmetrical findings of WML in the watershed areas as seen on MRI are caused by hemodynamic effect and a differentiation between small vessel disease and a consequence of distant stenosis may be possible under such condition

    Multiresolution fuzzy clustering of functional MRI data

    Get PDF
    Recent developments in the analysis of functional MRI data reveal a shift from hypothesis-driven statistical tests to unsupervised strategies. One of the most promising approaches is the fuzzy clustering algorithm (FCA), whose potential to detect activation patterns has already been demonstrated. But the FCA suffers from three drawbacks: first the computational complexity, second the higher sensitivity to noise and third the dependence on the random initialization. With the multiresolution approach presented here, these weak points are significantly improved, as is demonstrated in our tests with simulated and real functional MRI dat

    Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): initial results

    Get PDF
    Objectives: To diagnose Parkinson disease (PD) at the individual level using pattern recognition of brain susceptibility-weighted imaging (SWI). Methods: We analysed brain SWI in 36 consecutive patients with Parkinsonism suggestive of PD who had (1) SWI at 3T, (2) brain 123I-ioflupane SPECT and (3) extensive neurological testing including follow-up (16 PD, 67.4 ± 6.2years, 11 female; 20 OTHER, a heterogeneous group of atypical Parkinsonism syndromes 65.2 ± 12.5years, 6 female). Analysis included group-level comparison of SWI values and individual-level support vector machine (SVM) analysis. Results: At the group level, simple visual analysis yielded no differences between groups. However, the group-level analyses demonstrated increased SWI in the bilateral thalamus and left substantia nigra in PD patients versus other Parkinsonism. The inverse comparison yielded no supra-threshold clusters. At the individual level, SVM correctly classified PD patients with an accuracy above 86%. Conclusions: SVM pattern recognition of SWI data provides accurate discrimination of PD among patients with various forms of Parkinsonism at an individual level, despite the absence of visually detectable alterations. This pilot study warrants further confirmation in a larger cohort of PD patients and with different MR machines and MR parameters. Key Points: • Magnetic resonance imaging data offers new insights into Parkinson's disease • Visual susceptibility-weighted imaging (SWI) analysis could not discriminate idiopathic from atypical PD • However, support vector machine (SVM) analysis provided highly accurate detection of idiopathic PD • SVM analysis may contribute to the clinical diagnosis of individual PD patients • Such information can be readily obtained from routine MR dat

    Double-lumen balloon microcatheter-assisted occlusion of cerebral vessels with coils: a technical note

    Get PDF
    The purpose of this study was to describe a balloon-assisted double-lumen microcatheter technique to perform a controlled and tight coil packing of a vascular segment for vessel occlusion. This technique can be performed immediately after a test occlusion with the balloon kept in place and was, as illustrated in six cases, in our experience safe, straight forward to use and fas

    Radiation dose in vertebroplasty

    Get PDF
    We wished to measure the absorbed radiation dose during fluoroscopically controlled vertebroplasty and to assess the possibility of deterministic radiation effects to the operator. The dose was measured in 11consecutive procedures using thermoluminescent ring dosimeters on the hand of the operator and electronic dosimeters inside and outside of the operator's lead apron. We found doses of 0.022-3.256mGy outside and 0.01-0.47mGy inside the lead apron. Doses on the hand were higher, 0.5-8.5mGy. This preliminary study indicates greater exposure to the operator's hands than expected from traditional apron measurement

    Multi-time-lag PIV analysis of steady and pulsatile flows in a sidewall aneurysm

    Get PDF
    The effect of inflow waveform on the hemodynamics of a real-size idealized sidewall intracranial aneurysm (IA) model was investigated using particle imaging velocimetry (PIV). For this purpose, we implemented an error analysis based on several PIV measurements with different time lags to ensure high precision of velocity fields measured in both the IA and the parent artery. The relative error measured in the main part of the circulating volume was <1% despite the three orders of magnitude difference of parent artery and IA dome velocities. Moreover, important features involved in IA evolution were potentially emphasized from the qualitative and quantitative flow pattern comparison resulting from steady and unsteady inflows. In particular, the flow transfer in IA and the vortical structure were significantly modified when increasing the number of harmonics for a typical physiological flow, in comparison with quasi-steady conditions

    Decompressive hemicraniectomy in severe cerebral venous thrombosis: a prospective case series

    Get PDF
    Small retrospective case series suggest that decompressive hemicraniectomy can be life saving in patients with cerebral venous thrombosis (CVT) and impending brain herniation. Prospective studies of consecutive cases are lacking. Thus, a single centre, prospective study was performed. In 2006 we adapted our protocol for CVT treatment to perform acute decompressive hemicraniectomy in patients with impending herniation, in whom the prognosis with conservative treatment was considered infaust. We included all consecutive patients with CVT between 2006 and 2010 who underwent hemicraniectomy. Outcome was assessed at 12 months with the modified Rankin Scale (mRS). Ten patients (8 women) with a median age of 41 years (range 26–52 years) were included. Before surgery 5 patients had GCS < 9, 9 patients had normal pupils, 1 patient had a unilaterally fixed and dilated pupil. All patients except one had space-occupying intracranial hemorrhagic infarcts. The median preoperative midline shift was 9 mm (range 3–14 mm). Unilateral hemicraniectomy was performed in 9 patients and bilateral hemicraniectomy in one. Two patients died from progressive cerebral edema and expansion of the hemorrhagic infarcts. Five patients recovered without disability at 12 months (mRS 0–1). Two patients had some residual handicap (one minor, mRS 2; one moderate, mRS 3). One patient was severely handicapped (mRS 5). Our prospective data show that decompressive hemicraniectomy in the most severe cases of cerebral venous thrombosis was probably life saving in 8/10 patients, with a good clinical outcome in six. In 2 patients death was caused by enlarging hemorrhagic infarcts

    Basic MR sequence parameters systematically bias automated brain volume estimation

    Get PDF
    Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p &lt; 0.001) in cortical gray matter and 4.16 % (p &lt; 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p &lt; 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results
    corecore