
Introduction

In functional MRI (fMRI), activation patterns are
usually retrieved by voxel-wise testing for correlation of
the measurements with a paradigm-defined input func-
tion (e.g. SPM [1]). In contrast to these standard analysis
tools, the fuzzy clustering algorithm (FCA) [2] is a way
of investigating complex data without imposing prior
assumptions on the results that are searched for. It has
been shown that the FCA can reliably detect activation
patterns [3, 4], even under difficult conditions and in
complex studies where several different functional com-
ponents are involved [5].

The FCA-based analysis of fMRI time series con-
siders each of the N voxel time courses as a P-dimen-
sional vector X=(X1,...,Xp), where N is the number of
voxels making up the volume of one MR acquisition and
P is the number of acquisitions. The algorithm aims to
find C vectors v1,...,vC—the prototypes or centroids for
C different clusters—such that the objective function

Jm U ; Vð Þ ¼
XN

i¼1

XC

j¼1
uij
� �m

d2 xi; vj
� �

ð1Þ

is minimized. The scalars uij 2[0,1] describe the degree of
membership of the time course Xi to the jth cluster,
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Abstract Recent developments in
the analysis of functional MRI data
reveal a shift from hypothesis-driven
statistical tests to unsupervised
strategies. One of the most promis-
ing approaches is the fuzzy cluster-
ing algorithm (FCA), whose
potential to detect activation
patterns has already been demon-
strated. But the FCA suffers from
three drawbacks: first the computa-
tional complexity, second the higher
sensitivity to noise and third the
dependence on the random initiali-
zation. With the multiresolution
approach presented here, these weak
points are significantly improved, as
is demonstrated in our tests with
simulated and real functional MRI
data.
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where uij=1 means exclusive membership and uij=0 is
no membership. d2 is any inner product metric on RP,
the real number m>1 regulates the fuzziness of the
clustering and V represents the set of centroids v1,...,vC.
Necessary conditions for minimizing Jm are:

uik ¼
1

PC

j¼1

dik
djk

� �2=ðm�1Þ 16i6N ; 16j6C ð2Þ

where dik=d(xi,vk) and

vj ¼

PN

k¼1
ujk
� �m

xk

PN

k¼1
ujk
� �m

1 � j � C: ð3Þ

A local minimum is now found by iteratively computing
the centroids v1,...,vC and the membership matrix
U=[uij] with formulas (3) and (4) until the distance be-
tween two consecutively calculated membership matrices
U(k) and U(k+1) is less than a defined threshold, i.e.

DU ¼ U kþ1ð Þ � U kð Þ�� �� � e; ð4Þ

where the threshold is a small number, e.g. e=0.01.
To start, the FCA needs initialization. Since we as-

sume that nothing is known about the data fed into the
FCA, the initialization must be a random guess. The
initialization is usually done for the membership matrix
U, but starting with some randomly chosen centroids
would also work. Following Bezdek [2], U is usually
initialized as

U ¼ 1�
ffiffi
2
p

2

� �
UC þ

ffiffi
2
p

2 Ur ð5Þ

with UC=[1/C] and Ur is a random hard partition.

Limitations of the FCA

The analysis of fMRI data with the FCA suffers from
three main drawbacks: first the solution and speed of
convergence depend strongly on the (requisite) random
initialization of the algorithm, second the FCA is fairly
sensitive to noise, and third the high computational
complexity renders the FCA very time-consuming. This
section discusses approaches proposed by others to deal
with these problems.

fMRI studies typically consist of 50 or more acqui-
sitions. Supposing a volume of 64·64·64 voxels per scan
leads to vectors of dimension P=50 or more and a
membership matrix U of dimension C·262,144, resulting
in an enormous slowdown of the computationally very
expensive FCA. This huge number of time courses can
be reduced by discarding the background voxels in
fMRI datasets, since they certainly do not contribute

anything to brain activation patterns. This can be ef-
fected by a simple mean thresholding, i.e. all time
courses with a mean value less than a specified threshold
are eliminated. This is a standard method also applied in
hypothesis-driven analysis procedures to both improve
the statistical power and to save time by reducing the
number of statistical comparisons. Eliminating the
background voxels reduces the volume of a scan to
approximately 25–30% of its original size. Another
efficient way to speed up the FCA is the preselection
(screening) of potentially interesting time courses, such
that those time courses where only noise is expected are
discarded [6]. There exist several preselection methods,
such as spectral peaks, autocorrelation and novelty
indices. Of course, mean thresholding is also a kind of
preselection. As a side effect, the reduction of the data to
some potentially interesting subset renders the algorithm
more robust, but the sensitivity to noise remains an is-
sue. The noise problem should rather be approached via
the fuzzy index m in formula (1). But unfortunately,
there is no theoretical basis currently known for an
optimal choice for the value of m and, consequently,
only empirical solutions, such as ROC methods, are
available. Although fairly successful, preselecting data
by some criterion is a step back towards model-driven
analysis and should therefore be used with caution.
Furthermore, screening methods such as spectral peaks
have lower sensitivity when the time courses of interest
are not periodic, because the power spectral density has
much less pronounced peaks that would indicate the
presence of a signal. But the restriction to periodic or
nearly periodic signals is rather severe with regard to the
increasingly complex paradigms developed in fMRI and
event-related fMRI studies.

The random initialization has a considerable effect on
the convergence of the algorithm in terms of both speed
and solution, as can be seen in the Results. But the
concept of the random starting point is intrinsic to the
FCA and thus remains a problem.

Multiresolution FCA

In [7], we introduced the multiresolution FCA (MFCA)
to reduce the computational complexity. The MFCA
takes advantage of the fact that the vectors under
investigation derived from fMRI data have a spatial
structure in terms of neighbourhoods. Two neighbour-
ing vectors are likely to be more or less correlated,
allowing for a multiresolution approach, that first scales
down the data volumes. Starting with the lowest reso-
lution, the FCA is applied to that level and then the
computed centroids are used as initial values for the
FCA for the next-highest level of resolution, and so on
until the original resolution is reached. Since the
processing of all lower resolution levels is virtually an
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initialization of the FCA at the full resolution level (in
fact a very good initialization), it will converge quite
rapidly to a local minimum.

As we shall show here, the MFCA not only speeds up
the algorithm, it improves precisely those weak points of
the standard FCA mentioned in the previous section.
First, it depends much less on the random initialization
and is therefore more robust. Second, the downsampling
of the data volume has a smoothing effect that renders
the MFCA less sensitive to noise. And third, as already
mentioned, the computationally very complex algorithm
becomes faster, since each level of resolution reduces the
amount of data from its preceding level by a factor of 2
per dimension. A three-dimensional data set is therefore
reduced to 1/8 or 12.5% per level, so that the FCA
computation becomes extremely fast at lower levels.
Another advantageous property of the MFCA is that it
can be combined easily with other methods such as
preselection that aim to optimize the algorithm. Joining
the MFCA with preselection (mean thresholding, spec-
tral peaks, autocorrelation and combinations of these
three) combines the advantages of both approaches and
leads to a fast and robust clustering of the data.

To further improve the performance of the algorithm,
we vary the stopping criterion for the different levels. To
justify this step, recall that the processing of the low
resolution levels of the MFCA serves as an initialization
of the FCA at the full resolution level and is already
fairly close to the final solution. Therefore, the risk of
starting at a ‘‘bad place’’ that would lead us to a weak
local minimum is significantly smaller and, more
important for our case, the starting point will not lie at a
location that is far from a minimum of Jm and at the
same time has a small derivative DJm (which with ran-
dom initialization of the FCA can happen quite fre-
quently). Consequently, we can relax the stopping
criterion for the algorithm, e.g. from e=0.01 to e=1,
resulting in a significantly improved performance with-
out loss of quality.

It is clear that the choice of e should depend on the
chosen matrix norm. For example, taking the maximum
norm

Uk kmax ¼ max
i;k

uikf g

requires a smaller e than the sum-squared difference

Uk kssqd ¼
X

i

X

k

u2
ik

to achieve (ideally) the same results. But, when using the
latter, it should be noted that the matrix distance depends
strongly on the dimensions of U, i.e. the number of time
courses N and the number of clusters C. This applies
especially to the case of the MFCA, where N differs from
level to level. Obviously, e should decrease with the
dimensions ofU. This would justify the use of a gradually

increasing e. On the other hand, taking the same e for all
levels results in a stronger stopping criterion at the high
resolution levels. We chose an intermediate way by
adapting the e only at the final level, keeping in mind that
the processing of the low resolutions is fast. Our tests
with simulated and real fMRI data showed that the
MFCA with e=0.01 at the levels L)1 to 1 and e=1 at
level 0 worked perfectly well, whereas the single-level
FCA failed in about 40% of cases when setting e=1.

It is important to check the number of initial clusters
C against the number of time courses N in the level of
lowest resolution to avoid the case N<C.

Another issue of interest is the kind of filter used to
down-sample the volumes. There is an extensive amount
of literature addressing this point and our comparisons
of several filters have found that the simplest (and fast-
est), on the Haar wavelet based down-sampling operator
is quite comparable regarding the robustness and con-
vergence of the MFCA [8].

Materials and methods

We have tested our algorithm on simulated datasets as well as on
real fMRI data. Each dataset was classified into C=4 clusters with
the standard FCA (one level) and with the multi-resolution FCA
with two, three and four levels. The stopping condition of the FCA
must be clearly defined in order to prevent the algorithm getting
stuck at a bad minimum. However, level 1 is already very close to
the solution so the risk of landing at a bad minimum no longer
exists. This does not complicate performance measurements. In-
deed we only count the number of necessary iterations in order to
achieve the same (or better) result.

To compare the performance of our algorithm with the stan-
dard FCA, we have chosen the following machine-independent
measure: we counted the total number of iterations IL needed by
the MFCA operating on L levels until the criterion for convergence
was reached by weighting the number of iterations for each level
using the formula

IL ¼
XL�1

l¼0

�ttl
�tt0
� il; ð6Þ

where t�i is the mean value of the time consumed for one iteration
and il is the number of iterations at level l. The levels are always
labelled from 0 (the full resolution) to the number of levels L minus
one (the least resolution).

The comparison was then expressed as a speed-up factor by
calculating sf=l1/lL, i.e. by dividing the number of iterations in the
standard FCA case by the total number of iterations needed by the
L-level MFCA.

We generated a three-dimensional dataset of volume 64·64·32
voxels with 50 ‘‘scans’’, including a lower and a higher background
level with a value of 30 and 22 respectively. Onto the higher level,
we put two spatially separated ‘‘signals’’ over time, one describing a
single peak with slow decay and the other as a periodic box car
function. The spatial extent of these insertions was 16·16·8 voxels.
Finally, we added gaussian noise in two different contrast to noise
ratios, CNR1=1 and CNR2=2. Each of these two datasets has
been analysed with various combinations of preprocessing and
preselection steps. Throughout this work, the preprocessing steps
are abbreviated with lower-case letters (m, mean subtraction; n,
normalization; d, detrend) and the preselections with capital letters
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(S, spectral peaks; A, autocorrelation; M, mean thresholding), and
0 (zero) indicates that no option was selected at a particular step.
Each combination is abbreviated to a preprocessing code of the
form preprocessing_preselection. The preprocessing applied to the
time courses has a larger effect on the convergence of the algorithm
than the preselection because preprocessing changes the distances
between the vectors [9] whereas preselection mainly reduces the
number of vectors to classify.

Testing the noise sensitivity

To test the noise sensitivity, we evaluated the datasets under vari-
ous preprocessing options with the FCA and the two-, three- and
four-level MFCA (labelled 1L, 2L, 3L and 4L respectively). The
options were 0_0, 0_S, 0_A, m_0, m_S, m_A, n_0, n_S, n_A, and
each run was repeated 30 times.

Testing with real fMRI data

To evaluate the MFCA with real fMRI data, we took a dataset of
size 128·128·8 voxels with 48 scans. The underlying paradigm was
a language task arranged in a standard block design. The volumes
have not been corrected for head motion. For preprocessing, we
used mean subtraction. This step was applied after preselection to
allow for mean thresholding. Therefore, we would expect four
different types of time courses in the dataset: the task-related signal,
two opponent head-motion-correlated ‘‘signals’’ and noise. To see
that head motion will result in two classes, suppose that the subject
moved his head towards the left. Some pixels located on the left of
the head will then move into the head and produce a rising signal
whilst some pixels at the right side of the head will move outside the
head and produce a descending signal.

We tested the MFCA under all possible combinations of the
preselection options M, S and A, leading in total to eight tests that
were repeated 30 times each. We let the algorithm search for C=4
clusters.

Results

Dependence on the random initialization

The convergence of the MFCA is very robust compared
with the FCA. This is illustrated in Fig. 1. The dataset
with CNR1=1 was evaluated with the FCA and the
three-level MFCA 100 times each under the same con-
ditions (preprocessing option 0_S). The number of iter-
ations needed by the FCA varies over a broad range,
indicating a strong dependence on the initialization.
Following a common convention we stopped the com-
putation when it did not converge within a reasonable
time, i.e. we set the maximal number of iterations to 100.
The MFCA, on the other hand, is extremely stable,
showing almost no variability in the number of itera-
tions required. The achieved speed-up for this case is up
to 24.2, with an average of 11.4.

For many applications, speed might not matter. But,
more importantly, the FCA did not always converge to
the same solution. One way to measure the quality of a
solution is a cluster validity measure [2]. There exist
numerous such measures. We used the so-called parti-
tion coefficient F(U,C), which is defined as follows:

F U ;Cð Þ ¼ 1

N

XN

i¼1

XC

j¼1
u2

ij ð7Þ

where again C is the number of clusters and N is the
number of time courses.

The partition coefficient is a number in the closed
interval [1/C, 1]. Low values correspond to large over-
laps of different clusters and a value of 1 would mean
that all clusters are strictly disjoint. A value of 1/C
would stand for the case where all clusters are identical.
Thus, we can see that the FCA converged to different
solutions, depending on the initial conditions. These
different solutions can be divided into three groups: the
first group, with a F(U,C) of 65%, has a relative group
size of 34%; the second group, with a F(U,C) of 0.59 has
a 56% relative group size; and the third group, with a
F(U,C) between 0.51 and 0.55, has a relative group size
of 10%. All runs in group 3 have not met the conver-
gence criterion after 100 iterations. Note that the cluster
validities are all below 0.70 because the algorithm was
not able to extract all different classes of signals that

Fig. 1a, b Convergence of the standard FCA compared with the
three-level MFCA (100 repetitions with random initialization).
a Number of iterations until convergence. b Cluster validity
measure of found solutions
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exist in the dataset and at least two clusters were iden-
tical. In contrast to this, the MFCA could discriminate
all clusters in all the test cases. Accordingly all values are
about 0.89, indicating that the algorithm always con-
verged to the same solution.

Noise sensitivity

The noise sensitivity results are reported in Fig. 2 and
Table 1. For the dataset with CNR=2, the FCA and the
MFCA yielded the same results for the options 0_S,
0_A, m_S, m_A and n_A. The cluster validity measures
achieved by the MFCA are slightly lower than for the
FCA in these cases. This is because we set the threshold
for the matrix distance in formula (4) to e=1at the full
resolution level instead of e=0.01, forcing the algorithm
to stop earlier. But the values differ less than 0.1% and
have no measurable effect on the found centroids.

The values of F(U,C) are all in the range from 0.88 to
0.93, which indicates a very good discrimination of the
four classes present in the dataset. For option 0_0 (no
preprocessing and no preselection), the results illustrate
the power of the MFCA. The standard FCA converged
in 27% of the runs to the worst possible solution with all
four centroids being identical, i.e. F(U,C=4)=0.25. In
the other 73%, the FCA was only able to find the two
background levels, and could not detect any signal. The
MFCA on the other hand yielded better solutions the
more levels were applied. The two-level MFCA could in
all cases find the two background levels, the three-level
MFCA found in some cases even the periodic boxcar
signal and the four-level MFCA converged in all cases to
the solution with three distinct centroids. Apparently,
options m_0, n_0 and n_S were far more difficult to
evaluate. The FCA as well as the two- and three-level
MFCA ended up with the worst solution. Only the four-
level MFCA found at least the two background levels.

For the dataset with CNR=1, the resulting cluster
validity measures F(U,C) are shown in Fig. 3 and their
distributions are listed in Table 2. Since the values are
lower than for CNR=2, the noise sensitivity of fuzzy
clustering is obvious. But it is also obvious that the
MFCA is clearly less sensitive to noise. Except for the
options m_0, n_0 and n_S, which were problematic to
the algorithm at CNR=2, the MFCA yielded improved
solutions. Two cases are worth discussing in more detail.

option 0_0: Surprisingly, the FCA performed better
with lower CNR, i.e. it could in all cases
discriminate the two background levels.
Since the FCA is difficult to understand in
all its properties, we could only speculate
about the reasons for this. Thus we con-
centrate instead on the comparison with
the MFCA. As expected, the MFCA be-
came increasingly stable with increasing
number of levels. With four levels, it con-
verged in almost all cases to an improved
solution. We also tested this option with
five levels and found that the MFCA was
fully stable for the solution with
F(U,C)=0.534 (2 background clusters +
periodic boxcar signal).

Fig. 2 Cluster validity mea-
sures F(U,C) for the dataset
with CNR=2 and C=4. For
the distribution of the different
solutions under a given condi-
tion see Table 1

Table 1 Distribution of the different solutions under the same
preprocessing and preselection conditions for a given depth of the
MFCA (number of levels) for CNR=2

Preprocessing/preselection
Number of levels

Cluster validity measures F(U,C)
and their relative frequency

0_0 1L 0.25 (27%) 0.37 (73%)
0_0 3L 0.37 (77%) 0.50 (13%) 0.54 (10%)
m_0 4L 0.25 (3%) 0.34 (97%)
n_0 4L 0.25 (40%) 0.34 (60%)
n_S 4L 0.25 (63%) 0.34 (37%)
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option 0_A: As was the case with option 0_0, the four
levels were not enough to obtain a stable
solution. When applying five levels, the
ratio was 68% at F(U,C)=0.78 vs 32% at
F(U,C)=0.86. It can be expected that
further increasing the number of levels
would shift the ratio more towards the
solution F(U,C)=0.68. But here a limit-
ing factor comes into play: The volumes
cannot be downsampled to an arbitrary
small size, because the number of time
courses left for analysis of a level should
be sufficiently large compared with the
number of clusters to ensure a meaningful
clustering. This is true in particular when
the MFCA is combined with some pre-
selection method that further reduces the
number of time courses. In our example,
the lowest level of the four-level MFCA
has 256 time courses, of which 19 survive
the autocorrelation criterion. And the
five-level MFCA starts with 32 time
courses with only five of them surviving
the preselection. With six levels, the initial
number of time courses is 4, being equal
to the number of clusters to classify. It is
very likely that the number of time
courses will drop below the number of
clusters after preselection.

An alternative way to increase the quality of the
solution is to choose a different filter for downsampling.
A suitable choice is, for example, centred splines [10].
We carried out the same tests for option 0_A with cen-
tred splines of order 3 instead of the Haar filter and
found that all runs with the three- and four-level MFCA
converged to the solution with F(U,C)=0.86. Moreover,
it took only half the number of iterations needed in the

case of the Haar filter. But the filters associated with
centred splines have noticeably more coefficients and
therefore take a rather long time for downsampling the
data to lower levels.

Computational costs

When analysing the noise sensitivity, we also counted
the number of iterations needed for each run. From this,
we calculated the mean speed-up factors for every pre-
processing option as: (mean of number of iterations
FCA)/(mean of number of iterations MFCA). Table 3
summarizes the results. In general, the more levels the
MFCA has, the faster it is. This follows from the fact
that each level of low resolution initializes the preceding
level with a good starting point. Whenever the speed-up
gets lower with additional levels, the quality of the final

Fig. 3 Cluster validity mea-
sures F(U,C=4) for the dataset
with CNR=1. Distributions
of the different solutions are
listed in Table 2

Table 2 Distribution of the different solutions under the same
preprocessing and preselection conditions for a given depth of the
MFCA (number of levels) for CNR=1

Preprocessing/preselection
Number of levels

Cluster validity measures F(U,C)
and their relative frequency

0_0 2L 0.37 (97%) 0.50 (3%)
0_0 3L 0.37 (77%) 0.50 (23%)
0_0 4L 0.37 (3%) 0.53 (97%)
0_S 1L 0.52 (6%) 0.59 (47%) 0.65 (47%)
0_A 1L 0.70 (43%) 0.78 (57%)
0_A 2L 0.78 (87%) 0.86 (13%)
0_A 4L 0.78 (97%) 0.86 (3%)
m_S 1L 0.48 (60%) 0.52 (40%)
M_S 2L 0.48 (7%) 0.53 (93%)
M_A 1L 0.65 (40%) 0.71 (60%)
M_A 2L 0.65 (17%) 0.71 (83%)
N_A 1L 0.65 (73%) 0.68 (27%)
N_A 2L 0.65 (50%) 0.68 (50%)
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solution is increased. This can be seen by comparing
Table 3 with Fig. 2 and Fig. 3.

Tests with real fMRI data

The cluster validity measures resulting from tests with
real fMRI data are shown in Fig. 4. For the case 0 (no
preselection, i.e. the full dataset including the back-
ground voxels), the FCA and the MFCA up to three
levels reached a value of 0.25, meaning that they were
not able to separate the dataset into different classes.
The four-level MFCA improved the situation only a
little. It could identify two clusters (one head-movement-
related ‘‘signal’’ and noise) and reached a cluster validity
of 0.35. Except for the two cases ‘‘MS’’ and ‘‘MSA’’, the
MFCA converged towards solutions superior to
the solutions found by the FCA, being more robust the
more levels were applied.

The differences between the cluster validity measures
of the FCA and the MFCA do not seem to be very large.
But it turns out that they are critical for detecting the
virtual signal of interest. Consider, for example, the case
‘‘SA’’ with the least difference for F(U,C). The solutions
found by the FCA have a validity measure F(U,C)=0.69
and the solutions of the three- and four-level MFCA
have F(U,C)=0.75. While the solution found by the
MFCA shows the expected 4 clusters, the FCA failed to
find the task-related signal and instead divided one of
the head motion clusters into two (see Fig. 5 and Fig. 6).
These two clusters have more overlap than the motion
cluster has with the task cluster and, accordingly, the
cluster validity measure is smaller.

The achieved speed-up of the MFCA is summarized
in Table 4. Again, a drop in the speed-up factors cor-
responds to improved solutions.

Discussion

The MFCA is a significant improvement on the FCA. It
is considerably more robust and faster. The results
suggest that the more levels are applied in the MFCA,
the better the algorithm works. Although this is true in
general, there are some limiting factors to be considered.
First, the more levels the algorithm has, the more
overhead is created for building the multi-resolution
pyramid and preprocessing of the data at each level.
Second, the number of time courses surviving a prese-
lection should always be checked before processing a
low-resolution level. It might happen, in particular at
low resolutions, that the number of clusters is almost the
same or even exceeds the number of time courses. This

Table 3 Mean speed-up factors of the MFCA for different pre-
processing/preselection options

Preprocessing/preselection CNR=1 CNR=2

2L 3L 4L 2L 3L 4L

0_0 12 17.5 15.7 20.6 31.0 25.4
0_S 9.8 10.5 8.3 1.8 1.8 1.9
0_A 4.9 4.7 4.8 8.1 9.4 9.5
m_0 3.1 4.2 4.3 3.1 4.2 1.9
m_S 4.9 2.7 2.7 2.8 2.9 2.9
m_A 4.1 4.2 4.3 5.7 8.7 8.8
n_0 3.1 4.2 4.3 3.1 4.1 2.4
n_S 3.1 4.2 4.3 3.1 4.1 2.8
n_A 5.1 5.3 5.3 2.9 4.0 4.0

Fig. 4 Cluster validity mea-
sures F(U,C=4) for the real
fMRI dataset
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can easily lead to a situation where two clusters have
maximum overlap, i.e. their centroids will be equal. If
the next level of resolution is then initialized with some
centroids being equal, they will not be separated by the
FCA at this level. To verify this, suppose that two
centroids are equal, i.e. V1=V2. Then, updating the

membership values with formula (2) yields ui1=ui2 for
i=1,...N, which in turn again results in V1=V2 when
updating the centroids with formula (3). As a result, the
clustering will certainly not be optimal.

At every level it is important to test the number of
voxels versus the number of clusters, to use filters that
are not too large (with many coefficients) and to perform
an MFCA with little depth in the presence of bad results
[i.e. deep F(U,C)].

The multiresolution technique replaces the necessary
random initialization of the FCA by a clustering of low-
resolution copies of the dataset. The final FCA applied
to the full resolution level becomes very fast and more
robust, because it has a good starting point and its
convergence is therefore straight and fast.

Designs of fMRI studies of the human brain have
become increasingly sophisticated, leading to intricate
setups for conventional statistical evaluation techniques
to fetch all activation patterns hidden in the data.
Therefore, an unsupervised exploration of the data is
more suitable. Our results have shown that the fuzzy
clustering algorithm is able to reliably find activation
patterns in fMRI data. With the MFCA it is even pos-
sible to evaluate a complex design including several
components that occur as single events in random order
in a single analysis [5]. This shows the growing relevance
of unsupervised analysis strategies for fMRI. However,
as with all these unsupervised strategies, the question
remains whether the activation observed corresponds to
a task. This remains the focus of future investigation, as
would the comparison of the MFCA method with other
postprocessing strategies. A p value has been determined
for the FCA and can easily be implemented [9]. Potential
applications also include the investigation of brain
activity and activation during sleep, since in this situa-
tion there is no known input factor or applicable box-
shaped pattern of activity [11]. Another application
could be the measurement of diffusion changes occur-
ring randomly in the penumbral areas of acute stroke
[12, 13].

Fig. 5 Clusters and the centroids for the fMRI dataset found by
the FCA. Clusters 1 and 4 together with cluster 3 contain the
signals associated with head motion, while cluster 2 is the noise.
The task-related signal of interest is lost. The cluster validity
measure F(U,C)=0.69

Fig. 6 Clusters and centroids for the fMRI dataset found by the
three-level MFCA. Clusters 1 and 2 contain the head motion,
cluster 3 is the noise and cluster 4 contains the task-related signal.
The cluster validity measure is F(U,C)=0.75

Table 4 Mean speed-up factors for the real fMRI dataset

Preselection 2L 3L 4L

0 2.9 3.8 0.6
M 1.1 2.4 2.5
S 2.7 1.9 1.9
A 2.9 1.5 1.8
MS 2.6 1.8 2.6
MA 2.9 3.9 4.0
SA 2.9 2.5 2.6
MSA 3.9 4.2 4.2
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