33 research outputs found

    Predictive indicators for revisional surgery in nasal reconstruction after Mohs surgery

    Get PDF
    Background: Reconstruction of nasal lesions is complex due to the topography, mobile free margins and borders of anatomical subunits. Reconstructive challenges can lead to multiple revisional surgeries to achieve the final aesthetic result. This study aimed to evaluate risk factors and predictors of revisional surgery in patients undergoing reconstruction after Mohs micrographic surgery for nasal tumours. Methods: This was a prospective cohort study from April 2, 2008 to February 26, 2019. The study population included all consecutive patients who underwent Mohs micrographic surgery for nasal skin cancer. Resection and reconstruction of nasal skin cancer was performed by the Mohs team. Results: A total of 988 cases met our study inclusion criteria with 64 (6.5%) cases requiring unplanned surgical revision. Revision rates were highest in the ala (9.0%, p < 0.05) and complex anatomical subunits (16.7%, p < 0.0001). In contrast, revision rates for dorsum lesions were lowest (1.8%, p < 0.001). In terms of reconstructive modalities, local flaps resulted in significantly higher rates of revision when compared to grafts (relative risk, 2.37; 95% CI, 1.15–5.0; p < 0.01). In terms of histological diagnosis, squamous cell carcinoma had significantly higher revision rates when compared to basal cell carcinoma (p < 0.05). Conclusions: To our knowledge, this is the first study to report the risk factors and predictors of revision surgery in patients undergoing MMS for nasal tumours. This study highlights that the reconstructive modality utilised affects the functional and cosmetic outcome of MMS. We note that ala complex subunit lesions, squamous cell carcinoma and flap reconstruction were associated with an increased risk of revision after Mohs reconstruction of nasal lesions. Level of evidence: Level III, risk/prognostic; therapeutic study. Trial registration number: (Ref: PLA-19-20_A03) 04/02/2020

    Cellular Therapy for Wounds: Applications of Mesenchymal Stem Cells in Wound Healing

    Get PDF
    Despite progress in wound treatment including gene therapy, biological dresses and engineered skin equivalents, present treatment options for chronic wounds are restricted and not always effective. For example, inability to get consistent product from the introduced gene, biological covers may give rise to hypoxic conditions and engineered skin models are limited by their construction from substances which are hard to be degraded, and do not always result in complete replication into normal uninjured skin. A growing body of evidence suggests mesenchymal stem cells (MSCs), and their secreted growth factors and microvesicles, may potentiate the wound‐healing process and as such their addition to novel wound‐healing treatments may improve the efficacy of current therapeutic strategies. Recent studies report the ability of bone marrow‐derived MSCs (BM‐MSCs) to migrate and differentiate into skin cells in vivo

    Research Techniques Made Simple: Analysis of Autophagy in the Skin.

    Get PDF
    Autophagy is required for normal skin homeostasis and its disordered regulation is implicated in a range of cutaneous diseases. Several well-characterized biomarkers of autophagy are used experimentally to quantify autophagic activity or clinically to correlate autophagy with disease progression. This article discusses the advantages and limitations of different approaches for measuring autophagy as well as the techniques for modulating autophagy. These include analysis of endogenous LC3, a central autophagy regulatory protein, and measurement of LC3 flux using a dual-fluorescent reporter, which provides a quantitative readout of autophagy in cell culture systems in vitro and animal models in vivo. Degradation of SQSTM1/p62 during autophagy is proposed as an alternative biomarker allowing the analysis of autophagy both experimentally and clinically. However, the complex regulation of individual autophagy proteins and their involvement in multiple pathways means that several proteins must be analyzed together, preferably over a time course to accurately interpret changes in autophagic activity. Genetic modification of autophagy proteins can be used to better understand basic autophagic mechanisms contributing to health and disease, whereas small molecule inhibitors of autophagy regulatory proteins, lysosomal inhibitors, or activators of cytotoxic autophagy have been explored as potential treatments for skin disorders where autophagy is defective. [Abstract copyright: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

    Differential effects of retinoic acid isomers on the expression of nuclear receptor co-regulators in neuroblastoma

    Get PDF
    AbstractRetinoic acid modulates growth and induces differentiation and apoptosis of neuroblastoma cells in vitro, with the all-trans and 9-cis isomers having different biological properties. Transcriptional activation in response to retinoic acid isomers is mediated by retinoic acid receptors and retinoid X receptors. The differential expression of co-activators and co-repressors which preferentially interact with retinoic acid receptors or retinoid X receptors may be a mechanism leading to different cellular responses to 9-cis and all-trans retinoic acid. To test this hypothesis, we have studied the expression of the nuclear receptor co-regulators TIF1α, TIF1ÎČ, SUG1 and SMRT in the N-type and S-type neuroblastoma cell lines SH SY 5Y and SH S EP. Transcripts for all four co-regulators were expressed in these neuroblastoma cells. The expression of TIF1α, TIF1ÎČ and SUG1 did not change in response to retinoic acid; however, SMRT was induced in both neuroblastoma cell lines, but particularly by all-trans retinoic acid in SH S EP cells. An additional co-activator, Trip3, was isolated by differential mRNA display and shown to be preferentially induced by 9-cis retinoic acid in SH SY 5Y and SH S EP cells. These data suggest that retinoic acid isomer-specific induction of nuclear receptor co-regulators may determine, in part, the differential biological effects of retinoic acid isomers

    Students’ and tutors’ experiences of remote ‘student–patient’ consultations

    Get PDF
    Background: Remote consulting has become part of the medical student clinical experience in primary care, but little research exists regarding the impact on learning. Aim: To describe the experiences of General Practitioner (GP) educators and medical students in using student-led remote consultations as an educational tool. Method: A qualitative, explorative study conducted at four UK medical schools. GP educators and medical students were purposively sampled and interviewed. Results: Nine themes arose: practical application, autonomy, heuristics, safety, triage of undifferentiated patients, clinical reasoning, patient inclusion in student education, student–patient interaction, and student–doctor interaction. Discussion: Remote consulting has become part of the clinical placement experience. This has been found to expose students to a wider variety of clinical presentations. Verbal communication, history-taking, triage, and clinical reasoning skills were practised through remote consulting, but examination skills development was lacking. Students found building rapport more challenging, although this was mitigated by having more time with patients. Greater clinical risk was perceived in remote consulting, which had potential to negatively impact students’ psychological safety. Frequent debriefs could ameliorate this risk and positively impact student–doctor relationships. Student autonomy and independence increased due to greater participation and responsibility. Pre-selection of patients could be helpful but had potential to expose students to lower complexity patients

    Exposure of Monocytic Cells to Lipopolysaccharide Induces Coordinated Endotoxin Tolerance, Mitochondrial Biogenesis, Mitophagy, and Antioxidant Defenses

    Get PDF
    In order to limit the adverse effects of excessive inflammation, anti-inflammatory responses are stimulated at an early stage of an infection, but during sepsis these can lead to deactivation of immune cells including monocytes. In addition, there is emerging evidence that the up-regulation of mitochondrial quality control mechanisms, including mitochondrial biogenesis and mitophagy, is important during the recovery from sepsis and inflammation. We aimed to describe the relationship between the compensatory immune and mitochondrial responses that are triggered following exposure to an inflammatory stimulus in human monocytic cells. Incubation with lipopolysaccharide resulted in a change in the immune phenotype of THP-1 cells consistent with the induction of endotoxin tolerance, similar to that seen in deactivated septic monocytes. After exposure to LPS there was also early evidence of oxidative stress, which resolved in association with the induction of antioxidant defenses and the stimulation of mitochondrial degradation through mitophagy. This was compensated by a parallel up-regulation of mitochondrial biogenesis that resulted in an overall increase in mitochondrial respiratory activity. These observations improve our understanding of the normal homeostatic responses that limit the adverse cellular effects of unregulated inflammation, and which may become ineffective when an infection causes sepsis

    Validation of Epidermal AMBRA1 and Loricrin (AMBLor) as a prognostic biomarker for non-ulcerated AJCC stage I/II cutaneous melanoma

    Get PDF
    Background: Combined expression of the autophagy-regulatory protein AMBRA1 (activating molecule in Beclin1-regulated autophagy) and the terminal differentiation marker loricrin in the peritumoral epidermis of stage I melanomas can identify tumour subsets at low risk of metastasis. Objectives: To validate the combined expression of peritumoral AMBRA1 and loricrin (AMBLor) as a prognostic biomarker able to identify both stage I and II melanomas at low risk of tumour recurrence. Methods: Automated immunohistochemistry was used to analyse peritumoral AMBRA1 and loricrin expression in geographically distinct discovery (n = 540) and validation (n = 300) cohorts of nonulcerated American Joint Committee on Cancer (AJCC) stage I and II melanomas. AMBLor status was correlated with clinical outcomes in the discovery and validation cohorts separately and combined. Results: Analysis of AMBLor in the discovery cohort revealed a recurrence-free survival (RFS) rate of 95.5% in the AMBLor low-risk group vs. 81.7% in the AMBLor at-risk group (multivariate log-rank, P < 0.001) and a negative predictive value (NPV) of 96.0%. In the validation cohort, AMBLor analysis revealed a RFS rate of 97.6% in the AMBLor low-risk group vs. 78.3% in the at-risk group (multivariate log-rank, P < 0.001) and a NPV of 97.6%. In a multivariate model considering AMBLor, Breslow thickness, age and sex, analysis of the combined discovery and validation cohorts showed that the estimated effect of AMBLor was statistically significant ,with a hazard ratio of 3.469 (95% confidence interval 1.403–8.580, P = 0.007) and an overall NPV of 96.5%. Conclusions These data provide further evidence validating AMBLor as a prognostic biomarker to identify nonulcerated AJCC stage I and II melanoma tumours at low risk of disease recurrence

    Established and Emerging Biomarkers in Cutaneous Malignant Melanoma

    No full text
    In an era of personalized medicine, disease specific biomarkers play an increasing role in the stratification of high-risk patient groups. Cutaneous malignant melanoma is the most deadly form of skin cancer with an ever-increasing global incidence, especially in patients under 35-years of age. Despite the excellent prognosis for patients diagnosed with early stage disease, metastatic disease still carries significant overall mortality. Biomarkers aim not only to identify high-risk patients, but also to provide potential therapeutic targets for differing patient subgroups. Furthermore, accessibility to tissue samples from a range of disease stages in malignant melanoma, unlike most other solid tissue tumours, provides the unique opportunity to explore the biology of tumour progression that may be relevant in the biology of cancer as a whole. Over the past decade, there have been major advances in targeted therapies, providing new avenues and hope to patients with this devastating disease. This review will focus on most up to date histological, serological and molecular biomarkers in malignant melanoma

    Established and Emerging Biomarkers in Cutaneous Malignant Melanoma

    No full text
    In an era of personalized medicine, disease specific biomarkers play an increasing role in the stratification of high-risk patient groups. Cutaneous malignant melanoma is the most deadly form of skin cancer with an ever-increasing global incidence, especially in patients under 35-years of age. Despite the excellent prognosis for patients diagnosed with early stage disease, metastatic disease still carries significant overall mortality. Biomarkers aim not only to identify high-risk patients, but also to provide potential therapeutic targets for differing patient subgroups. Furthermore, accessibility to tissue samples from a range of disease stages in malignant melanoma, unlike most other solid tissue tumours, provides the unique opportunity to explore the biology of tumour progression that may be relevant in the biology of cancer as a whole. Over the past decade, there have been major advances in targeted therapies, providing new avenues and hope to patients with this devastating disease. This review will focus on most up to date histological, serological and molecular biomarkers in malignant melanoma
    corecore