6 research outputs found

    Effectiveness of XP-endo finisher in the reduction of bacterial load in oval-shaped root canals

    Get PDF
    This study investigated the effectiveness of XP-Endo Finisher (XPF) associated with XP-Endo Shaper (XPS) or Reciproc Blue (RB) files in reducing bacterial load in oval-shaped root canals (RC) during chemomechanical preparation (CMP) using 0.9% saline solution (NaCl) or 2.5% sodium hypochlorite (NaOCl). Eighty mandibular incisors with single oval-shaped RC were contaminated with Enterococcus faecalis. The teeth were randomly assigned to eight experimental groups (n = 10) according to the CMP, as follows: G1: XPS, G2: XPS + XPF, G3: RB, and G4: RB + XPF. CMP was performed with NaCl or NaOCl. The reduction of bacterial load was assessed by colony-forming unit count before (S1) and after (S2) CMP. Data normality was verified by using Shapiro-Wilk test. ANOVA, Tukey's test, and Bonferroni post-hoc test were used at a 5% significance level. Culturable bacteria were present in all S1 samples (p>0.05). All instrumentation techniques were effective in reducing bacterial load, irrespective of the irrigating solution (p < 0.05). With the use of NaCl, RB was more effective than XPS (p = 0.035). With the use of NaOCl, XPS and RB presented similar effectiveness (p = 0.779). XPF enhanced the bacterial reduction of both systems tested (p < 0.05). The use of NaOCl improved the CMP, irrespective of the instrumentation technique used (p < 0.05). In conclusion, XPS and RB files are effective in reducing bacterial levels in oval-shaped RC. The use of XPF as a method of agitation of the irrigating solution improved the cleaning efficiency of both file systems tested. Mechanical preparation performed with saline solution decreased culturable bacteria from the root canal, but antimicrobial substances such as NaOCl should be used to achieve a significantly better disinfection33CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP308162/2014-5não tem2015/23479-

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text
    Abstract An updated inventory of Brazilian seed plants is presented and offers important insights into the country's biodiversity. This work started in 2010, with the publication of the Plants and Fungi Catalogue, and has been updated since by more than 430 specialists working online. Brazil is home to 32,086 native Angiosperms and 23 native Gymnosperms, showing an increase of 3% in its species richness in relation to 2010. The Amazon Rainforest is the richest Brazilian biome for Gymnosperms, while the Atlantic Rainforest is the richest one for Angiosperms. There was a considerable increment in the number of species and endemism rates for biomes, except for the Amazon that showed a decrease of 2.5% of recorded endemics. However, well over half of Brazillian seed plant species (57.4%) is endemic to this territory. The proportion of life-forms varies among different biomes: trees are more expressive in the Amazon and Atlantic Rainforest biomes while herbs predominate in the Pampa, and lianas are more expressive in the Amazon, Atlantic Rainforest, and Pantanal. This compilation serves not only to quantify Brazilian biodiversity, but also to highlight areas where there information is lacking and to provide a framework for the challenge faced in conserving Brazil's unique and diverse flora
    corecore