122 research outputs found

    Geospatial analysis of the energy yield and environmental footprint of different photovoltaic module technologies

    Get PDF
    The majority of currently installed photovoltaic (PV) systems are based on mono- and polycrystalline silicon PV modules. Manufacturers of competing technologies often argue that due to the characteristics of their PV technologies, PV systems based on their modules are able to achieve higher annual energy yield, due to a smaller effect of temperature on module performance and/or a better performance at low light intensities. While these benefits have been confirmed in local studies many times, there is still limited insight as to the locations at which a particular technology actually performs best. In this study we have analysed the performance of a large set of PV modules, based on irradiance time series that were taken from satellite measurements. Using these data, and combining it with a PV performance model, we have made a geospatial analysis of the energy yield of different types of PV modules. We aim to make the energy yield of the investigated modules spatially explicit, allowing PV system installers to choose the best module type for every location investigated. Our results show that there is large geographical variety in the performance of PV modules, in terms of energy yield but also in terms of relative performance or performance ratio. While some technologies clearly exhibit a decrease in performance ratio at locations where they operate at higher temperatures, for some technologies this effect is much smaller. As a result of the variation in performance, the environmental footprint of.13V modules also shows large geographical variations. However, even at low irradiance locations the environmental footprint of PV modules in general is much lower compared to that of fossil fuel based electricity generation. (C) 2017 Elsevier Ltd. All rights reserved

    Sialylation of campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice

    Get PDF
    <p>Background: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.</p> <p>Methodology/Principal Findings: In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.</p> <p>Conclusions/Significance: These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS</p&gt

    Comprehensive characterisation and analysis of PV module performance under real operating conditions

    Get PDF
    The specifications of photovoltaic modules show performance under standard testing conditions (STC), but only limited information relating to performance at non-STC conditions. While performance is affected by irradiance, temperature, spectral composition of irradiance, angle-of-incidence of the irradiance and other parameters, specifications only partly give detail to consumers or retailers about the effect of irradiance and temperature. In this study, we characterise and analyse the performance of eight different, commercially available photovoltaic modules. We establish the effect of four different parameters on module performance: irradiance, temperature, spectral composition of irradiance (via the parameter average photon energy) and angle-of-incidence, by performing linear and nonlinear optimisation of physical or empirical models. Furthermore, we characterise the operating conditions and analyse the seasonal and annual development and contribution of the four parameters to energy losses or gains relative to STC operating conditions. We show a comprehensive way of presenting the deviation of performance from STC, combining the variation in operating conditions and the resulting variation in performance. Our results show that some effects on performance are attributable to the semiconductor material used in the modules (spectral composition and temperature), while especially angle-of-incidence effects seem more related to the type of glass used on as the front cover of the module. Variation in irradiance and module temperature generally affect performance the strongest, resulting in a performance effect ranging from + 2.8% to − 3.2% and − 0.5% to − 2.2%, respectively. The combined effect of all parameters results in an annual yield deviation ranging from + 1.2% to − 5.9%

    Third structure determination by powder diffractometry round robin (SDPDRR-3)

    Get PDF
    The results from a third structure determination by powder diffractometry (SDPD) round robin are discussed. From the 175 potential participants having downloaded the powder data, nine sent a total of 12 solutions (8 and 4 for samples 1 and 2, respectively, a tetrahydrated calcium tartrate and a lanthanum tungstate). Participants used seven different computer programs for structure solution (ESPOIR, EXPO, FOX, PSSP, SHELXS, SUPERFLIP, and TOPAS), applying Patterson, direct methods, direct space methods, and charge flipping approach. It is concluded that solving a structure from powder data remains a challenge, at least one order of magnitude more difficult than solving a problem with similar complexity from single-crystal data. Nevertheless, a few more steps in the direction of increasing the SDPD rate of success were accomplished since the two previous round robins: this time, not only the computer program developers were successful but also some users. No result was obtained from crystal structure prediction expert

    Communication and patient safety in gynecology and obstetrics - study protocol of an intervention study.

    Get PDF
    BACKGROUND: Patient safety is a key target in public health, health services and medicine. Communication between all parties involved in gynecology and obstetrics (clinical staff/professionals, expectant mothers/patients and their partners, close relatives or friends providing social support) should be improved to ensure patient safety, including the avoidance of preventable adverse events (pAEs). Therefore, interventions including an app will be developed in this project through a participatory approach integrating two theoretical models. The interventions will be designed to support participants in their communication with each other and to overcome difficulties in everyday hospital life. The aim is to foster effective communication in order to reduce the frequency of pAEs. If communication is improved, clinical staff should show an increase in work satisfaction and patients should show an increase in patient satisfaction. METHODS: The study will take place in two maternity clinics in Germany. In line with previous studies of complex interventions, it is divided into three interdependent phases. Each phase provides its own methods and data. Phase 1: Needs assessment and a training for staff (n = 140) tested in a pre-experimental study with a pre/post-design. Phase 2: Assessment of communication training for patients and their social support providers (n = 423) in a randomized controlled study. Phase 3: Assessment of an app supporting the communication between staff, patients, and their social support providers (n = 423) in a case-control study. The primary outcome is improvement of communication competencies. A range of other implementation outcomes will also be assessed (i.e. pAEs, patient/treatment satisfaction, work satisfaction, safety culture, training-related outcomes). DISCUSSION: This is the first large intervention study on communication and patient safety in gynecology and obstetrics integrating two theoretical models that have not been applied to this setting. It is expected that the interventions, including the app, will improve communication practice which is linked to a lower probability of pAEs. The app will offer an effective and inexpensive way to promote effective communication independent of users' motivation. Insights gained from this study can inform other patient safety interventions and health policy developments. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03855735; date of registration: February 27, 2019

    Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development

    Get PDF
    Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We present a review of 40 years of photovoltaics development, analysing the development of energy demand and greenhouse gas emissions associated with photovoltaics production. Here we show strong downward trends of environmental impact of photovoltaics production, following the experience curve law. For every doubling of installed photovoltaic capacity, energy use decreases by 13 and 12% and greenhouse gas footprints by 17 and 24%, for poly-and monocrystalline based photovoltaic systems, respectively. As a result, we show a break-even between the cumulative disadvantages and benefits of photovoltaics, for both energy use and greenhouse gas emissions, occurs between 1997 and 2018, depending on photovoltaic performance and model uncertainties

    Campylobacter jejuni Cas9 Modulates the Transcriptome in Caco-2 Intestinal Epithelial Cells

    Get PDF
    The zoonotic human pathogen Campylobacter jejuni is known for its ability to induce DNA-damage and cell death pathology in humans. The molecular mechanism behind this phenomenon involves nuclear translocation by Cas9, a nuclease in C. jejuni (CjeCas9) that is the molecular marker of the Type II CRISPR-Cas system. However, it is unknown via which cellular pathways CjeCas9 drives human intestinal epithelial cells into cell death. Here, we show that CjeCas9 released by C. jejuni during the infection of Caco-2 human intestinal epithelial cells directly modulates Caco-2 transcriptomes during the first four hours of infection. Specifically, our results reveal that CjeCas9 activates DNA damage (p53, ATM (Ataxia Telangiectasia Mutated Protein)), pro-inflammatory (NF-κB (Nuclear factor-κB)) signaling and cell death pathways, driving Caco-2 cell

    Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early-onset pre-eclampsia.

    Get PDF
    Pre-eclampsia is a serious complication of pregnancy that can affect both maternal and fetal outcomes. Early-onset pre-eclampsia (EOPET) is a severe form of pre-eclampsia that is associated with altered physiological characteristics and gene expression in the placenta. DNA methylation is a relatively stable epigenetic modification to DNA that can reflect gene expression, and can provide insight into the mechanisms underlying such expression changes. This case-control study focused on DNA methylation and gene expression of whole chorionic villi samples from 20 EOPET placentas and 20 gestational age-matched controls from pre-term births. DNA methylation was also assessed in placentas affected by late-onset pre-eclampsia (LOPET) and normotensive intrauterine growth restriction (nIUGR). The Illumina HumanMethylation450 BeadChip was used to assess DNA methylation at >480 000 cytosine-guanine dinucleotide (CpG) sites. The Illumina HT-12v4 Expression BeadChip was used to assess gene expression of >45 000 transcripts in a subset of cases and controls. DNA methylation analysis by pyrosequencing was used to follow-up the initial findings in four genes with a larger cohort of cases and controls, including nIUGR and LOPET placentas. Bioinformatic analysis was used to identify overrepresentation of gene ontology categories and transcription factor binding motifs. We identified 38 840 CpG sites with significant (false discovery rate 12.5% methylation difference compared with the controls. Significant sites were enriched at the enhancers and low CpG density regions of the associated genes and the majority (74.5%) of these sites were hypomethylated in EOPET. EOPET, but not associated clinical features, such as intrauterine growth restriction (IUGR), presented a distinct DNA methylation profile. CpG sites from four genes relevant to pre-eclampsia (INHBA, BHLHE40, SLC2A1 and ADAM12) showed different extent of changes in LOPET and nIUGR. Genome-wide expression in a subset of samples showed that some of the gene expression changes were negatively correlated with DNA methylation changes, particularly for genes that are responsible for angiogenesis (such as EPAS1 and FLT1). Results could be confounded by altered cell populations in abnormal placentas. Larger sample sizes are needed to fully address the possibility of sub-profiles of methylation within the EOPET cohort. Based on DNA methylation profiling, we conclude that there are widespread DNA methylation alterations in EOPET that may be associated with changes in placental function. This property may provide a useful tool for early screening of such placentas. This study identifies DNA methylation changes at many loci previously reported to have altered gene expression in EOPET placentas, as well as in novel biologically relevant genes we confirmed to be differentially expressed. These results may be useful for DNA- methylation-based non-invasive prenatal diagnosis of at-risk pregnancies

    CRISPR-CAS diversity in clinical salmonella enterica serovar typhi isolates from South Asian countries

    Get PDF
    Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), is a global health concern and its treatment is problematic due to the rise in antimicrobial resistance (AMR). Rapid detection of patients infected with AMR positive S. Typhi is, therefore, crucial to prevent further spreading. Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated genes (CRISPR-Cas), is an adaptive immune system that initially was used for typing purposes. Later, it was discovered to play a role in defense against phages and plasmids, including ones that carry AMR genes, and, at present, it is being explored for its usage in diagnostics. Despite the availability of whole-genome sequences (WGS), very few studied the CRISPR-Cas system of S. Typhi, let alone in typing purposes or relation to AMR. In the present study, we analyzed the CRISPR-Cas system of S. Typhi using WGS data of 1059 isolates obtained from Bangladesh, India, Nepal, and Pakistan in combination with demographic data and AMR status. Our results reveal that the S. Typhi CRISPR loci can be classified into two groups: A (evidence level >2) and B (evidence level ≤2), in which we identified a total of 47 unique spacers and 15 unique direct repeats. Further analysis of the identified spacers and repeats demonstrated specific patterns that harbored significant associations with genotype, demographic characteristics, and AMR status, thus raising the possibility of their usage as biomarkers. Potential spacer targets were identified and, interestingly, the phage-targeting spacers belonged to the group-A and plasmid-targeting spacers to the group-B CRISPR loci. Further analyses of the spacer targets led to the identification of an S. Typhi protospacer adjacent motif (PAM) sequence, TTTCA/T. New cas-genes known as DinG, DEDDh, and WYL were also discovered in the S. Typhi genome. However, a specific variant of the WYL gene was only identified in the extensively drug-resistant (XDR) lineage from Pakistan and ciprofloxacin-resistant lineage from Bangladesh. From this work, we conclude that there are strong correlations between variations identified in the S. Typhi CRISPR-Cas system and endemic AMR positive S. Typhi isolates
    • …
    corecore