13 research outputs found

    Blood transcriptional biomarkers of acute viral infection for detection of pre-symptomatic SARS-CoV-2 infection: a nested, case-control diagnostic accuracy study

    Get PDF
    Background We hypothesised that host-response biomarkers of viral infections might contribute to early identification of individuals infected with SARS-CoV-2, which is critical to breaking the chains of transmission. We aimed to evaluate the diagnostic accuracy of existing candidate whole-blood transcriptomic signatures for viral infection to predict positivity of nasopharyngeal SARS-CoV-2 PCR testing.Methods We did a nested case-control diagnostic accuracy study among a prospective cohort of health-care workers (aged ≥18 years) at St Bartholomew’s Hospital (London, UK) undergoing weekly blood and nasopharyngeal swab sampling for whole-blood RNA sequencing and SARS-CoV-2 PCR testing, when fit to attend work. We identified candidate blood transcriptomic signatures for viral infection through a systematic literature search. We searched MEDLINE for articles published between database inception and Oct 12, 2020, using comprehensive MeSH and keyword terms for “viral infection”, “transcriptome”, “biomarker”, and “blood”. We reconstructed signature scores in blood RNA sequencing data and evaluated their diagnostic accuracy for contemporaneous SARS-CoV-2 infection, compared with the gold standard of SARS-CoV-2 PCR testing, by quantifying the area under the receiver operating characteristic curve (AUROC), sensitivities, and specificities at a standardised Z score of at least 2 based on the distribution of signature scores in test-negative controls. We used pairwise DeLong tests compared with the most discriminating signature to identify the subset of best performing biomarkers. We evaluated associations between signature expression, viral load (using PCR cycle thresholds), and symptom status visually and using Spearman rank correlation. The primary outcome was the AUROC for discriminating between samples from participants who tested negative throughout the study (test-negative controls) and samples from participants with PCR-confirmed SARS-CoV-2 infection (test-positive participants) during their first week of PCR positivity.Findings We identified 20 candidate blood transcriptomic signatures of viral infection from 18 studies and evaluated their accuracy among 169 blood RNA samples from 96 participants over 24 weeks. Participants were recruited between March 23 and March 31, 2020. 114 samples were from 41 participants with SARS-CoV-2 infection, and 55 samples were from 55 test-negative controls. The median age of participants was 36 years (IQR 27–47) and 69 (72%) of 96 were women. Signatures had little overlap of component genes, but were mostly correlated as components of type I interferon responses. A single blood transcript for IFI27 provided the highest accuracy for discriminating between test-negative controls and test-positive individuals at the time of their first positive SARS-CoV-2 PCR result, with AUROC of 0·95 (95% CI 0·91–0·99), sensitivity 0·84 (0·70–0·93), and specificity 0·95 (0·85–0·98) at a predefined threshold (Z score >2). The transcript performed equally well in individuals with and without symptoms. Three other candidate signatures (including two to 48 transcripts) had statistically equivalent discrimination to IFI27 (AUROCs 0·91–0·95).Interpretation Our findings support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-CoV-2 infection for screening individuals at high risk of infection, such as contacts of index cases, to facilitate early case isolation and early use of antiviral treatments as they emerge

    Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure

    Get PDF
    The Omicron, or Pango lineage B.1.1.529, variant of SARS-CoV-2 carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection from severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple mRNA vaccinated healthcare workers (HCW) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple vaccinated individuals, but magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naïve HCW who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants, but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529

    Quantitative, multiplexed, targeted proteomics for ascertaining variant specific SARS-CoV-2 antibody response

    Get PDF
    Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination

    HRMOS White Paper: Science Motivation

    No full text
    The High-Resolution Multi-Object Spectrograph (HRMOS) is a facility instrument that we plan to propose for the Very Large Telescope (VLT) of the European Southern Observatory (ESO), following the initial presentation at the VLT 2030 workshop held at ESO in June 2019. HRMOS provides a combination of capabilities that are essential to carry out breakthrough science across a broad range of active research areas from stellar astrophysics and exoplanet studies to Galactic and Local Group archaeology. HRMOS fills a gap in capabilities amongst the landscape of future instrumentation planned for the next decade. The key characteristics of HRMOS will be high spectral resolution (R = 60000 - 80000) combined with multi-object (20-100) capabilities and long term stability that will provide excellent radial velocity precision and accuracy (10m/s). Initial designs predict that a SNR~100 will be achievable in about one hour for a star with mag(AB) = 15, while with the same exposure time a SNR~ 30 will be reached for a star with mag(AB) = 17. The combination of high resolution and multiplexing with wavelength coverage extending to relatively blue wavelengths (down to 380 nm), makes HRMOS a spectrograph that will push the boundaries of our knowledge and that is envisioned as a workhorse instrument in the future. The science cases presented in this White Paper include topics and ideas developed by the Core Science Team with the contributions from the astronomical community, also through the wide participation in the first HRMOS Workshop (https://indico.ict.inaf.it/event/1547/) that took place in Firenze (Italy) in October 2021

    HRMOS White Paper: Science Motivation

    No full text
    International audienceThe High-Resolution Multi-Object Spectrograph (HRMOS) is a facility instrument that we plan to propose for the Very Large Telescope (VLT) of the European Southern Observatory (ESO), following the initial presentation at the VLT 2030 workshop held at ESO in June 2019. HRMOS provides a combination of capabilities that are essential to carry out breakthrough science across a broad range of active research areas from stellar astrophysics and exoplanet studies to Galactic and Local Group archaeology. HRMOS fills a gap in capabilities amongst the landscape of future instrumentation planned for the next decade. The key characteristics of HRMOS will be high spectral resolution (R = 60000 - 80000) combined with multi-object (20-100) capabilities and long term stability that will provide excellent radial velocity precision and accuracy (10m/s). Initial designs predict that a SNR~100 will be achievable in about one hour for a star with mag(AB) = 15, while with the same exposure time a SNR~ 30 will be reached for a star with mag(AB) = 17. The combination of high resolution and multiplexing with wavelength coverage extending to relatively blue wavelengths (down to 380 nm), makes HRMOS a spectrograph that will push the boundaries of our knowledge and that is envisioned as a workhorse instrument in the future. The science cases presented in this White Paper include topics and ideas developed by the Core Science Team with the contributions from the astronomical community, also through the wide participation in the first HRMOS Workshop (https://indico.ict.inaf.it/event/1547/) that took place in Firenze (Italy) in October 2021

    Patisiran treatment in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy after liver transplantation

    No full text
    Hereditary transthyretin-mediated (hATTR) amyloidosis, or ATTRv amyloidosis, is a progressive disease, for which liver transplantation (LT) has been a long-standing treatment. However, disease progression continues post-LT. This Phase 3b, open-label trial evaluated efficacy and safety of patisiran in patients with ATTRv amyloidosis with polyneuropathy progression post-LT. Primary endpoint was median transthyretin (TTR) reduction from baseline. Twenty-three patients received patisiran for 12 months alongside immunosuppression regimens. Patisiran elicited a rapid, sustained TTR reduction (median reduction [Months 6 and 12 average], 91.0%; 95% CI: 86.1%-92.3%); improved neuropathy, quality of life, and autonomic symptoms from baseline to Month 12 (mean change [SEM], Neuropathy Impairment Score, −3.7 [2.7]; Norfolk Quality of Life-Diabetic Neuropathy questionnaire, −6.5 [4.9]; least-squares mean [SEM], Composite Autonomic Symptom Score-31, −5.0 [2.6]); and stabilized disability (Rasch-built Overall Disability Scale) and nutritional status (modified body mass index). Adverse events were mild or moderate; five patients experienced ≥1 serious adverse event. Most patients had normal liver function tests. One patient experienced transplant rejection consistent with inadequate immunosuppression, remained on patisiran, and completed the study. In conclusion, patisiran reduced serum TTR, was well tolerated, and improved or stabilized key disease impairment measures in patients with ATTRv amyloidosis with polyneuropathy progression post-LT (www.clinicaltrials.gov NCT03862807)
    corecore