3 research outputs found

    Specificity of LTR DNA recognition by a peptide mimicking the HIV-1 integrase α4 helix

    Get PDF
    HIV-1 integrase integrates retroviral DNA through 3′-processing and strand transfer reactions in the presence of a divalent cation (Mg2+ or Mn2+). The α4 helix exposed at the catalytic core surface is essential to the specific recognition of viral DNA. To define group determinants of recognition, we used a model composed of a peptide analogue of the α4 helix, oligonucleotides mimicking processed and unprocessed U5 LTR end and 5 mM Mg2+. Circular dichroism, fluorescence and NMR experiments confirmed the implication of the α4 helix polar/charged face in specific and non-specific bindings to LTR ends. The specific binding requires unprocessed LTR ends—i.e. an unaltered 3′-processing site CA↓GT3′—and is reinforced by Mg2+ (Kd decreases from 2 to 0.8 nM). The latter likely interacts with the ApG and GpT3′ steps of the 3′-processing site. With deletion of GT3′, only persists non-specific binding (Kd of 100 μM). Proton chemical shift deviations showed that specific binding need conserved amino acids in the α4 helix and conserved nucleotide bases and backbone groups at LTR ends. We suggest a conserved recognition mechanism based on both direct and indirect readout and which is subject to evolutionary pressure

    Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study

    No full text
    International audienceTemporin-SHa and temporin-SHc are 13 residue long antimicrobial peptides from frog skin that have similar sequences but differ markedly in their membrane-damaging properties. Temporin-SHa contains a single basic lysine residue and has a unique antimicrobial spectrum of action among temporins, being very potent against Gram-positive and Gram-negative bacteria, yeasts, fungi, and protozoa. Temporin-SHc, which contains a single basic histidine residue, is inactive against Gram-negative bacteria, has a reduced efficacy against Gram-positive bacteria, but is still active against yeasts and fungi. Temporin-SHb, with no basic residue, has no antimicrobial activity. The three-dimensional structures of the peptides bound to SDS micelles were analyzed by CD and NMR spectroscopy combined with restrained molecular dynamics calculations. The peptides adopt well-defined amphipathic alpha-helical structures extending from residue 3 to residue 12, when bound to SDS micelles. The structures are stabilized by extensive interactions between aliphatic and aromatic side chains on the nonpolar face. Relaxation enhancements caused by paramagnetic probes showed that the peptides adopt nearly parallel orientations to the micelle surface and do not deeply penetrate into the micelle. The interaction of the peptides with model membranes was investigated by differential scanning calorimetry on anionic and zwitterionic multilamellar vesicles and membrane-permeabilization assays on calcein-loaded large unilamellar vesicles. Calorimetric data indicated that both temporin-SHa and -SHc reside at the hydrocarbon core-water interface of the anionic lipid bilayer but interact with anionic bilayers in a very different manner. This suggests that the charge-induced activity of temporins-SH for bacterial cells is due to changes in the membrane-disturbing mechanism of the bound peptides
    corecore