4,088 research outputs found

    Joint Stiffness Influence on the First-Order Seismic Capacity of Dry-Joint Masonry Structures: Numerical DEM Investigations

    Get PDF
    Heritage masonry structures are often modelled as dry-jointed structures. On the one hand, it may correspond to the reality where the initial mortar was weak, missing, or has disappeared through time because of erosion and lixiviation. On the other hand, this modelling approach reduces complexity to the studied problem, both from an experimental and theoretical/numerical point of views, while being conservative. Still, for modelling purposes, in addition to the joint friction, numerical approaches require a specific elastic parameter, the dry-joint stiffness, which is often hard to estimate experimentally. This work numerically investigates the effect of the joint stiffness on the collapse of scaled-down tilting test experiments carried out on perforated dry-joint masonry shear walls. It is found that geometrical imperfections of bricks and the absence of vertical precompression load can lead to very low equivalent dry-joint stiffness, which strongly affects the results, both in terms of collapse and damage limit state (DLS) loads, with practical implications for the engineering practice

    Fragility Functions for Tall URM Buildings around Early 20th Century in Lisbon, Part 2: Application to Different Classes of Buildings

    Get PDF
    This article describes the application of the procedure for the derivation of fragility functions presented in the companion article entitled Fragility functions for tall URM buildings around early 20th century in Lisbon. Part 1: methodology and application at building level. The procedure, based on the execution of non-linear analyses, was developed to be applied to unreinforced masonry buildings considering both the in-plane and out-of-plane response. Different sources of uncertainty, both epistemic and aleatory, affecting the behaviour of these unreinforced masonry buildings are discussed and treated with a probabilistic procedure. The fragility curves determined for the different classes of buildings are compared and then combined to define the final fragility curves for these unreinforced masonry buildings. The results put in evidence the high seismic vulnerability of these buildings and the urgent need for the structural intervention and for the design of retrofitting measures in order to reduce potential losses due to future earthquakes

    Seismic vulnerability assessment of historical urban centres: The case study of campi alto di norcia, Italy

    Get PDF
    Seismic damage assessment is a valuable opportunity to evaluate the accuracy of vulnerability and risk methodologies applied to historic masonry buildings, giving the possibility of enhancing and optimizing mitigation and retrofit strategies. Vulnerability index methodologies are flexible and powerful tools for the seismic assessment at urban scale, able to provide a first screening of the critical issues present in masonry structural aggregates. The different structural features of the buildings, directly and indirectly influencing their structural behaviour, are measured through different weights and scores finally achieving a vulnerability indicator. In the present paper, four different vulnerability index methodologies are applied to the medieval city of Campi Alto di Norcia in Valnerina, Umbria, recently stroke by the 2016 Central Italy earthquakes. The accuracy of the adopted Iv methods is assessed based on the real damages' analysis performed in the surrounding area, comparing results achieved from the application of considered methodologies to direct in-situ observations. Data collected during the 2016 post-earthquake damage surveys and usability assessment, together with the external visual inspections carried out and with the information coming from retrofitting design interventions performed between 1979 and 1997, are used

    SLaMA-URM method for the seismic vulnerability assessment of UnReinforced Masonry structures: Formulation and validation for a substructure

    Get PDF
    An analytical procedure based on the SLaMA (Simplified Lateral Mechanism Analysis) method is proposed for the seismic vulnerability assessment of UnReinforced Masonry (URM) structures. The procedure considers an equivalent frame discretization for the structure (pier, spandrel, and joint elements) and includes: (i) the evaluation of moment‒rotation capacity curves at each pier-spandrel subassembly; (ii) the assessment of the hierarchy of strength in each subassembly; and (iii) the calculation of the structure capacity curve according to the expected failure mechanism. Validation of the proposed SLaMA-URM procedure is achieved in a one-story URM substructure tested under lateral cyclic loading. The analytical predictions are compared with numerical ones from a 2D continuous finite element (FE) model based on a macro-modelling strategy. The flexural capacity of the components is estimated using a monolithic beam analogy, and the results compared with those from traditional sectional analysis. The influence of the substructure geometry on the hierarchy of strength at the subassembly and global levels is investigated. An analytical formulation of the pier-spandrel joint strength is also proposed to be considered in the assessment of the hierarchy of strength. The method is validated for a one-story substructure subjected to lateral in-plane loading. Results, in terms of crack patterns and capacity curves, are in relatively good agreement with the experimental and FE results, even when a bilinear curve approximation is used. The potential of the SLaMA-URM method for the seismic assessment of URM buildings is demonstrated, whose application to a larger URM structure is planned as a subsequent study

    Finite element modeling and operational modal analysis of a historical masonry mosque

    Get PDF
    Finite Element Modeling (FEM) and Operational Modal Analysis (OMA) is herein presented for the historical masonry Kütahya Kurşunlu Mosque within the framework of its seismic performance assessment. The historical structure is located in Turkey which has a high-level seismic activity. A FEM strategy was adopted to construct a numerical model of the structure considering a simplified three-dimensional geometry and a macro-modeling approach for the masonry. A representative numerical model of the existing structure was calibrated and improved according to the OMA results obtained from ambient vibration measurements, performed in-situ. The ambient vibration measurements were operated by using two triaxial accelerometers, that one of the accelerometers was regulated as a reference station whereas the other accelerometer was relocated to seven different points on the top of the walls. Identification of the experimental modal parameters was achieved by performing two different signal processing methodologies, namely the Enhanced Frequency Domain Decomposition (EFDD) and the Stochastic Subspace Identification - Unweighted Principal Components (SSI-UPC). Results obtained from both methods were compared in terms of the Modal Assurance Criterion (MAC) which considers the mode shapes derived in a specific range of frequency. The SSI-UPC method was employed in achieving the experimental modal response of the structure and the results were compared with the eigenvalue analysis results of the preliminary numerical model. A calibration process was carried out in terms of minimizing the difference between the experimental and numerical modal response by a trial and error approach and an average error of 4.9% was calculated for the modal frequencies of the first four global modes of vibration

    Proptosis in a family with the p16 Leue-to-Prol mutation in the PMP22 gene (CMT 1E)

    Get PDF
    Univ Fed Paulista UNIFESP, Dept Neurol, São Paulo, BrazilUniv São Paulo, Fac Med Ribeirao Preto, Dept Neurociencias & Ciencias Comportamento, Ribeirao Preto, SP, BrazilUniv Fed Paulista UNIFESP, Dept Neurol, São Paulo, BrazilWeb of Scienc

    Utilização da mandioca na alimentação de ruminantes na Amazônia.

    Get PDF
    bitstream/item/60457/1/CPATU-Doc73.pd

    Temperature dependence of the electron spin g factor in GaAs

    Get PDF
    The temperature dependence of the electron spin gg factor in GaAs is investigated experimentally and theoretically. Experimentally, the gg factor was measured using time-resolved Faraday rotation due to Larmor precession of electron spins in the temperature range between 4.5 K and 190 K. The experiment shows an almost linear increase of the gg value with the temperature. This result is in good agreement with other measurements based on photoluminescence quantum beats and time-resolved Kerr rotation up to room temperature. The experimental data are described theoretically taking into account a diminishing fundamental energy gap in GaAs due to lattice thermal dilatation and nonparabolicity of the conduction band calculated using a five-level kp model. At higher temperatures electrons populate higher Landau levels and the average gg factor is obtained from a summation over many levels. A very good description of the experimental data is obtained indicating that the observed increase of the spin gg factor with the temperature is predominantly due to band's nonparabolicity.Comment: 6 pages 4 figure

    Structural changes in intestinal enteroendocrine cells after ileal interposition in normal rats

    Get PDF
    INTRODUCTION: No therapeutic approach has significantly impacted the progression of diabetes. As early improvement of glicaemic control is observed after bariatric surgeries, there is currently a search for surgical procedures that can promote euglycemia also in non-obese patients. Glicaemic control can be achieved by increasing the blood concentration of GLP-1, a hormone produced by L cells that are more densely concentrated in the terminal ileum. The interposition of ileal segment to a more anterior region (proximal jejunum) can promote a greater stimulation of the L cells by poorly digested food, increasing the production of GLP-1 and reflecting on glicaemic control.
AIMS: To investigate long-term histological modifications of intestinal mucosa of rats submitted to interposition of ileum segment to a proximal region (jejunum).
METHODS: Forty 8-week old male Wistar-EPM1 rats (Rattus norvegicus albinus) were randomly distributed into 3 groups: the Interposition Group (IG) was subjected to ileal interposition, the Sham Group (SG) was subjected to sham operations, and the Control Group (CG) was not subjected to surgery. All animals were followed until the 60th postoperative day (8 postoperative week) when they were euthanized. Segments of jejunum and ileum from all groups were collected and analyzed by optical microscopy and immunohistochemistry.
RESULTS: No structural nor histological changes in intestinal L cells in the interposed intestinal segment and other intestinal segments were noted after ileal interposition surgery. 
CONCLUSION: As L cells endocrine characteristics were likely maintained, the use of metabolic surgical techniques for the treatment of metabolic diseases, especially diabetes, seems to be justified

    Enhanced diffusion and bound exciton interactions of high density implanted bismuth donors in silicon

    Get PDF
    This study reports the effect of an increasing ion dose on both the electrical activation yield and the characteristic properties of implanted bismuth donors in silicon. A strong dependence of implant fluence is observed on both the yield of bismuth donors and the measured impurity diffusion. This is such that higher ion concentrations result in both a decrease in activation and an enhancement in donor migration through interactions with mobile silicon lattice vacancies and interstitials. Furthermore, the effect of implant fluence on the properties of the Si:Bi donor bound exciton, D0X, is also explored using photoluminescence (PL) measurements. In the highest density sample, centers corresponding to the PL of bismuth D0Xs within both the high density region and the lower concentration diffused tail of the implanted donor profile are identifiable
    corecore