148 research outputs found

    In situ measured cross section geometry of old timber structures and its influence on structural safety

    Get PDF
    Old timber structures may show significant variation in the cross section geometry along the same element, as a result of both construction methods and deterioration. As consequence, the definition of the geometric parameters in situ may be both time consuming and costly. This work presents the results of inspections carried out in different timber structures. Based on the obtained results, different simplified geometric models are proposed in order to efficiently model the geometry variations found. Probabilistic modelling techniques are also used to define safety parameters of existing timber structures, when subjected to dead and live loads, namely self-weight and wind actions. The parameters of the models have been defined as probabilistic variables, and safety of a selected case study was assessed using the Monte Carlo simulation technique. Assuming a target reliability index, a model was defined for both the residual cross section and the time dependent deterioration evolution. As a consequence, it was possible to compute probabilities of failure and reliability indices, as well as, time evolution deterioration curves for this structure. The results obtained provide a proposal for definition of the cross section geometric parameters of existing timber structures with different levels of decay, using a simplified probabilistic geometry model and considering a remaining capacity factor for the decayed areas. This model can be used for assessing the safety of the structure at present and for predicting future performance

    Reliability analysis of a timber truss system subjected to decay

    Get PDF
    Assessing the safety of existing timber structures is of paramount importance for taking reliable decisions on repair actions and their extent. The results obtained through semi-probabilistic methods are unrealistic, as the partial safety factors present in codes are calibrated considering the uncertainty present in new structures. In order to overcome these limitations, and also to include the effects of decay in the safety analysis, probabilistic methods, based on Monte-Carlo simulation are applied here to assess the safety of existing timber structures. In particular, the impact of decay on structural safety is analyzed and discussed, using a simple structural model, similar to that used for current semi-probabilistic analysis

    Numerical analysis and experimental characterisation of brick masonry

    Get PDF
    Simulating the mechanical behaviour of masonry structures by using numerical analysis is still a complex subject because the process is hindered by little knowledge of the properties of masonry constituents and the interface. In particular, the definition of mechanical properties of masonry components is a key issue when finite element analysis is adopted for the prediction of the mechanical behaviour of masonry walls under accidental and exceptional loads. In an attempt to develop a detailed micro-modelling of brick masonry under compression, where the brick unit, mortar and brick-mortar interface are defined by their corresponding mechanical properties obtained through experimental testing, this work presents experimental tests on brick units, mortar and small masonry cubic specimens. Hence, a detailed micro-modelling of brick masonry cubic specimen is developed in ABAQUS. The numerical model is calibrated and validated based on the results obtained from the experimental tests on masonry cubic specimens. The results show that the numerical model is able to predict the mechanical behaviour of the masonry specimen with 95% accuracy in terms of compressive strength

    Engineering simulations of a super-complex cultural heritage building: Ica Cathedral in Peru

    Get PDF
    The Cathedral of Ica, Peru, is one of the four prototype buildings involved in the ongoing Seismic Retrofitting Project, initiative of the Getty Conservation Institute. The complex historical building, which was heavily damaged by earthquakes in 2007 and 2009, can be divided into two substructures: an external masonry envelope and an internal timber frame built by a construction method known as quincha technique. This study makes use of the information available in literature and the results obtained from experimental campaigns performed by Pontificia Universidad Catlica del PerA and University of Minho. Nonlinear behaviour of masonry is simulated in the numerical models by considering specified compressive and tensile softening behaviour, while isotropic homogeneous and linear behaviour is adopted for modelling timber with appropriate assumptions on the connections. A single representative bay was initially studied by performing linear elastic analysis and verifying the compliance with the various criteria specified by the applicable normative to discuss the actual failure of Ica Cathedral. Afterwards, the structural behaviour of the two substructures composing the Cathedral is evaluated independently. Finally, the interaction of these two substructures is investigated by performing structural analysis on the entire structure of Ica Cathedral. Several structural analysis techniques, including eigenvalue, nonlinear static and dynamic analyses, are performed in order to: (1) evaluate the dominant mode shapes of the structure; (2) validate the numerical models by reproducing the structural damage observed in situ; (3) estimate the structural performance; and (4) identify the main failure mechanisms.This work was carried out with funding from the Getty Seismic Retrofitting Project under the auspices of the Getty Conservation Institute (GCI). This work is also partially financed by FEDER funds through the Competitivity Factors Operational Programme-COMPETE and by national funds through FCT-Foundation for Science and Technology within the scope of the projects POCI-01-0145-FEDER-007633 and PTDC/ECM-EST/2777/2014.info:eu-repo/semantics/publishedVersio

    Cyclic behaviour of stone and brick masonry under uniaxial compressive loading

    Get PDF
    An experimental research concerning the uniaxial compressive behaviour of stone and brick specimens, as well as masonry prisms, is presented. Local sandstone and clay brick materials were used in order to obtain results representative with respect to local constructions. Aiming at a comprehensive material description, a set of displacementcontrolled experiments were carried out, both under monotonic and cyclic compressive loading. The procedure adopted for testing is described and the results are discussed, namely material brittleness, intrinsic variability, energy dissipation and stiffness degradation.Dans cet article une recherche expérimentale à propos du comportement en compression uniaxial de spécimens de pierre et de la brique, aussi bien que prismes de maçonnerie, est présenté. Grès et brique de l’argile locale ont été utilisés pour obtenir des résultats représentatifs en ce qui concerne les constructions locales. Avec l’objective de obtenir une description matérielle complète, un ensemble de tests contrôlé par déplacement a été emporté, sous chargement de compression monotonic et cyclique. La procédure adoptée pour tester est décrite et les résultats sont discutés, nommément la fragilité matérielle, variabilité intrinsèque des matériaux, dissipation d’énergie et déchéance de la raideur

    A model for pushover analysis of confined masonry structures : implementation and validation

    Get PDF
    Confined masonry (CM) is a typical building technique in Latin American countries. This technique, due to its simplicity of construction and similarity with traditional practices of reinforced concrete building, presents a potential of use in European regions with moderate-to-high seismicity. However, most of the procedures for seismic design in codes for Latin America are force-based, which appears to be inadequate due to the high dissipative response observed for CM. This paper presents a simplified numerical-analytical approach to model CM structures using pushover analysis, aiming to apply performance-based design procedures. First, a data mining process is performed on a database of experimental results collected from lateral tests on CM walls to adjust prediction models for the wall shear strength and to determine the input relevance through a sensitivity analysis. Then, an analytical model of CM structures for pushover analysis is proposed with basis on a wide-column approach that employs an adaptive shear load-displacement constitutive relation. The proposed method is compared with a discrete element model that represents explicitly the confinements-masonry interaction, against the experimental results obtained in a quasi-static test of a full-scale tridimensional CM structure. The accuracy of the predictions from both methods is very satisfactory, allowing to capture the base shear-displacement envelope and also the damage patterns of the structure, thus, demonstrating the ability of the methods to be used in performance-based seismic assessment and design of CM buildings.The first author acknowledges the financial support from the Portuguese Foundation for Science and Technology (FCT) through the Ph.D. Grant SFRH/BD/41221/2007

    Masonry components

    Get PDF
    Masonry is a non-homogeneous material, composed of units and mortar, which can be of different types, with distinct mechanical properties. The design of both masonry units and mortar is based on the role of the walls in the building. Load-bearing walls relate to structural elements that bear mainly vertical loads, but can serve also to resist to horizontal loads. When a structural masonry building is submitted to in-plane and out-of-plane loadings induced by an earthquake for example, the masonry walls are the structural elements that ensure the global stability of the building. This means that the walls should have adequate mechanical properties that enable them to resist to different combinations of compressive, shear and tensile stresses.The boundary conditions influence the resisting mechanisms of the structural walls under in-plane loading and in a buildings the connection at the intersection walls are of paramount importance for the out-of-plane resisting mechanism. However, it is well established that the masonry mechanical properties are also relevant for the global mechanical performance of the structural masonry walls. Masonry units for load-bearing walls are usually laid so that their perforations are vertically oriented, whereas for partition walls, brick units with horizontal perforation are mostly adopted

    Testing and modeling of a traditional timber mortise and tenon joint

    Get PDF
    The structural safety and behaviour of traditional timber structures depends significantly on the performance of their connections. The behaviour of a traditional mortise and tenon timber joint is addressed using physical testing of full-scale specimens. New chestnut wood and old chestnut wood obtained from structural elements belonging to ancient buildings is used. In addition, the performance of different semi and non-destructive techniques for assessing global strength is also evaluated. For this purpose, ultrasonic testing, micro-drilling and surface penetration are considered, and the possibility of their application is discussed based on the application of simple linear regression models. Finally, nonlinear finite element analysis is used to better understand the behaviour observed in the full-scale experiments, in terms of failure mode and ultimate load. The results show that the ultrasonic pulse velocity through the joint provides a reasonable estimate for the effective- ness of the assembly between the rafter and brace and novel linear regressions are proposed. The failure mechanism and load–displacement diagrams observed in the experiments are well captured by the proposed non-linear finite element analysis, and the parameters that affect mostly the ultimate load of the timber joint are the compressive strength of wood perpendicular to the grain and the normal stiffness of the interface elements representing the contact between rafter and brace

    Characterization of dry-stack interlocking compressed earth blocks

    Get PDF
    Earth has been a traditional building material to construct houses in Africa. One of the most common techniques is the use of sun dried or kiln fired adobe bricks with mud mortar. Fired bricks are the main cause for deforestation in countries like Malawi. Although this technique is low-cost, the bricks vary largely in shape, strength and durability. This leads to weak houses which suffer considerable damage during floods and seismic events. One solution is the use of dry-stack masonry with stabilized interlocking compressed earth blocks (ICEB). This technology has the potential of substituting the current bricks by a more sustainable kind of block. This study was made in the context of the HiLoTec project, which focuses on houses in rural areas of developing countries. For this study, Malawi was chosen for a case study. This paper presents the experimental results of tests made with dry-stack ICEBs. Soil samples from Malawi were taken and studied. Since the experimental campaign could not be carried out in Malawi, a homogenization process of Portuguese soil was made to produce ICEBs at the University of Minho, Portugal. Then, the compression and tensile strength of the materials was determined via small cylinder samples. Subsequently, the compression and flexural strength of units were determined. Finally, tests to determine the compressive strength of both prisms and masonry wallets and to determine the initial shear strength of the dry interfaces were carried out. This work provides valuable data for low-cost eco-efficient housingThis work was carried out under the research project HiLoTec - Development of a Sustainable Self-Construction System for Developing Countries. The authors wish to thank Mota-Engil Constructing Group for supporting this project

    Strengthening of three-leaf stone masonry walls: an experimental research

    Get PDF
    The paper summarizes the results of an experimental research carried out on three-leaf masonry walls of typical granite stone constructions from the North of Portugal. The research aimed at studying the behaviour under compression of this wall typology, as well as the improvements introduced by common strengthening techniques applied for the structural rehabilitation of masonry heritage buildings. Ten masonry specimens were tested, plain or strengthened by transversal tying of the external leaves, with GFRP bars, or/and by injection of the inner leaf, with a lime-based grout. The results obtained showed that these strengthening techniques were successful in increasing the compressive strength of the walls and in improving their behaviour under compressive loads.The authors would like to thank the technical staff of the Structural Laboratory of University of Minho for the help provided. Acknowledgements are also due to the companies Fradical, Mapei and Augusto de Oliveira Ferreira for providing raw materials and workmanship. Finally, the funding provided by the Portuguese Science and Technology Foundation, through the POCI/ECM/58987/2004 project, is gratefully acknowledged
    • …
    corecore