100 research outputs found

    PLGA Based Drug Carrier and Pharmaceutical Applications: The Most Recent Advances

    Get PDF
    Poly(lactic-co-glycolic acid) (PLGA) is one of the most successful polymers that has been used to produce medicines, such as drug carriers (DC) [...]</jats:p

    Fluorinated Molecules and Nanotechnology: Future 'Avengers' against the Alzheimer's Disease?

    Get PDF
    Alzheimer's disease (AD) is a serious health concern, affecting millions of people globally, which leads to cognitive impairment, dementia, and inevitable death. There is still no medically accepted treatment for AD. Developing therapeutic treatments for AD is an overwhelming challenge in the medicinal field, as the exact mechanics underlying its devastating symptoms is still not completely understood. Rather than the unknown mechanism of the disease, one of the limiting factors in developing new drugs for AD is the blood-brain barrier (BBB). A combination of nanotechnology with fluorinated molecules is proposed as a promising therapeutic treatment to meet the desired pharmacokinetic/physiochemical properties for crossing the BBB passage. This paper reviews the research conducted on fluorine-containing compounds and fluorinated nanoparticles (NPs) that have been designed and tested for the inhibition of amyloid-beta (A beta) peptide aggregation. Additionally, this study summarizes fluorinated molecules and NPs as promising agents and further future work is encouraged to be effective for the treatment of AD

    Factorial design as a tool for the optimization of plga nanoparticles for the co-delivery of temozolomide and o6-benzylguanine

    Get PDF
    Poly(D,L-lactic-co-glycolic) (PLGA) nanoparticles (NPs) have been widely studied for several applications due to their advantageous properties, such as biocompatibility and biodegradability. Therefore, these nanocarriers could be a suitable approach for glioblastoma multiforme (GBM) therapy. The treatment of this type of tumours remains a challenge due to intrinsic resistance mechanisms. Thus, new approaches must be envisaged to target GBM tumour cells potentially providing an efficient treatment. Co-delivery of temozolomide (TMZ) and O6-benzylguanine (O6BG), an inhibitor of DNA repair, could provide good therapeutic outcomes. In this work, a fractional factorial design (FFD) was employed to produce an optimal PLGA-based nanoformulation for the co-loading of both molecules, using a reduced number of observations. The developed NPs exhibited optimal physicochemical properties for brain delivery (dimensions below 200 nm and negative zeta potential), high encapsulation efficiencies (EE) for both drugs, and showed a sustained drug release for several days. Therefore, the use of an FFD allowed for the development of a nanoformulation with optimal properties for the co-delivery of TMZ and O6BG to the brain

    Molecular interactions between Vitamin B12 and membrane models: A biophysical study for new insights into the bioavailability of Vitamin

    Get PDF
    Vitamin B12 (VB12) deficiency is one of the most common malnutrition problems worldwide and is related to its poor bioavailability. The lipid composition of cell membranes and molecule-cell membrane lipid interactions are major factors affecting the bioavailability of nutrients. So, the study of these interactions may allow predicting the behavior of VB12 at cellular membranes and the effects on its activity. Thus, lipid vesicles with lipid composition similar to the majority of eukaryotic cell membranes were used as biomembrane models, and their interactions with VB12 molecules were evaluated. For that, different parameters were assessed such as the lipophilicity of VB12, its preferential location in the membrane and its effect on the physical properties of the bilayer. VB12 showed high affinity for the biological membranes, not inducing any biophysical changes in their properties. The interactions of VB12 with the membrane was affected by the complexity of the bilayer, since its increase in order and rigidity hinders the diffusion of molecules. Thus, the low bioavailability of VB12 is not related with its interactions with the biological membranes. (c) 2020 Elsevier B.V

    RVG29-Functionalized Lipid Nanoparticles for Quercetin Brain Delivery and Alzheimers Disease

    Get PDF
    Purpose: Lipid nanoparticles (SLN and NLC) were functionalized with the RVG29 peptide in order to target the brain and increase the neuronal uptake through the nicotinic acetylcholine receptors. These nanosystems were loaded with quercetin to take advantage of its neuroprotective properties mainly for Alzheimer's disease. Methods: The functionalization of nanoparticles with RVG29 peptide was confirmed by NMR and FTIR. Their morphology was assessed by transmission electron microscopy and nanoparticles size, polydispersity and zeta potential were determined by dynamic light scattering. The in vitro validation tests were conducted in hCMEC/D3 cells, a human blood-brain barrier model and thioflavin T binding assay was conducted to assess the process of amyloid-beta peptide fibrillation typical of Alzheimer's disease. Results: RVG29-nanoparticles displayed spherical morphology and size below 250 nm, which is compatible with brain applications. Zeta potential values were between −20 and −25 mV. Quercetin entrapment efficiency was generally higher than 80% and NLC nanoparticles were able to encapsulate up to 90%. The LDH assay showed that there is no cytotoxicity in hCMEC/D3 cell line and RVG29-nanoparticles clearly increased in 1.5-fold the permeability across the in vitro model of blood-brain barrier after 4 h of incubation compared with non-functionalized nanoparticles. Finally, this nanosystem was capable of inhibiting amyloid-beta aggregation in thioflavin T binding assay, suggesting its great potential for neuroprotection. Conclusions: RVG29-nanoparticles that simultaneously target the blood-brain barrier and induce neurons protection against amyloid-beta fibrillation proved to be an efficient way of quercetin delivery and a promising strategy for future approaches in Alzheimer's disease. [Figure not available: see fulltext.]. (c) 2020, Springer Science+Business Media, LLC, part of Springer Nature

    Expression of heterologous proteins flanked by NS3-4A cleavage sites within the hepatitis C virus polyprotein

    Get PDF
    AbstractHepatitis C virus (HCV) contributes substantially to human morbidity and mortality world-wide. The development of HCV genomes expressing heterologous proteins has enhanced the ability to study viral infection, but existing systems have drawbacks. Recombinant viruses often require adaptive mutations to compensate for reduced viral titers, or rely on an artificial genomic organization that uncouples viral protein expression from recombinant gene expression. Here, we sought to exploit the viral polyprotein processing machinery to express heterologous proteins within the context of the HCV polyprotein. We show that HCV genotypes 2a and 1b permit insertion of reporter proteins between NS5A and NS5B with minimal impact on viral fitness. Using this strategy we constructed reporter genomes exhibiting a wide dynamic range, simplifying analysis of HCV infection in primary hepatocytes. Expression of heterologous proteins within the HCV genome offers new opportunities to analyze HCV infection in experimental systems without perturbing functions of individual viral proteins

    Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite

    Get PDF
    An enzymatic biosensor based on nitric oxide reductase (NOR; purified from Marinobacter hydrocarbonoclasticus) was developed for nitric oxide (NO) detection. The biosensor was prepared by deposition onto a pyrolytic graphite electrode (PGE) of a nanocomposite constituted by carboxylated single-walled carbon nanotubes (SWCNTs), a lipidic bilayer [1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol (DSPE-PEG)] and NOR. NOR direct electron transfer and NO bioelectrocatalysis were characterized by several electrochemical techniques. The biosensor development was also followed by scanning electron microscopy and Fourier transform infrared spectroscopy. Improved enzyme stability and electron transfer (1.96 × 10-4 cm.s-1 apparent rate constant) was obtained with the optimum SWCNTs/(DOPE:DOTAP:DSPE-PEG)/NOR) ratio of 4/2.5/4 (v/v/v), which biomimicked the NOR environment. The PGE/[SWCNTs/(DOPE:DOTAP:DSPE-PEG)/NOR] biosensor exhibited a low Michaelis-Menten constant (4.3 μM), wide linear range (0.44-9.09 μM), low detection limit (0.13 μM), high repeatability (4.1% RSD), reproducibility (7.0% RSD), and stability (ca. 5 weeks). Selectivity tests towards L-arginine, ascorbic acid, sodium nitrate, sodium nitrite and glucose showed that these compounds did not significantly interfere in NO biosensing (91.0 ± 9.3%-98.4 ± 5.3% recoveries). The proposed biosensor, by incorporating the benefits of biomimetic features of the phospholipid bilayer with SWCNT's inherent properties and NOR bioelectrocatalytic activity and selectivity, is a promising tool for NO.FG thanks to Fundacão para a Ciência e a Tecnologia, MCTES (FCT/MCTES) for the fellowship grant SFRH/BD/52502/2014, which is financed by national funds and co-financed by FSE. LBM thanks to FCT/MCTES for the CEEC-Individual 2017 Program Contract. This work was supported by the PTDC/BB-BQB/0129/2014 project (FCT/MCTES), by FCT/MEC with national funds and co-funded by FEDER, and also by the Associate Laboratory Research Unit for Green Chemistry - Technologies and Processes Clean – LAQV, financed by national funds from FCT/MCTES (UID/QUI/50006/2019). The financial support from the European Union (FEDER funds through COMPETE) and National Funds (Fundação para a Ciência e Tecnologia-FCT) through project PTDC/ASP-PES/29547/2017, by FCT/MEC with national funds and co-funded by FEDER, is also acknowledged. J.A. Loureiro post-doc grant was supported by NORTE-01-0145-FEDER-000005 – LEPABE-2 ECO-INNOVATION, from North Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    Fighting methicillin-resistant staphylococcus aureus with targeted nanoparticles

    Get PDF
    Antimicrobial resistance (AMR) is considered one of the greatest threats to global health. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, accounting for about 90% of S. aureus infections widespread in the community and hospital settings. In recent years, the use of nanoparticles (NPs) has emerged as a promising strategy to treat MRSA infections. NPs can act directly as antibacterial agents via antibiotic-independent activity and/or serve as drug delivery systems (DDSs), releasing loaded antibiotics. Nonetheless, directing NPs to the infection site is fundamental for effective MRSA treatment so that highly concentrated therapeutic agents are delivered to the infection site while directly reducing the toxicity to healthy human cells. This leads to decreased AMR emergence and less disturbance of the individual’s healthy microbiota. Hence, this review compiles and discusses the scientific evidence related to targeted NPs developed for MRSA treatment.info:eu-repo/semantics/publishedVersio

    PLGA nanoparticles as a platform for vitamin D-based cancer therapy

    Get PDF
    Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were studied as drug delivery vehicles for calcitriol, the active form of vitamin D-3. In vitro effects of calcitriol encapsulated in PLGA nanoparticles were evaluated with respect to free calcitriol on human pancreatic cell lines, S2-013 and hTERT-HPNE, and the lung cancer cell line A549. Encapsulated calcitriol retained its biological activity, reducing the cell growth. Cytotoxicity assays demonstrated that encapsulation of calcitriol enhanced its inhibitory effect on cell growth at a concentration of 2.4 mu M for the S2-013 cells (91%) and for A549 cells (70%) comparared to the free calcitriol results. At this concentration the inhibitory effect on nontumor cells (hTERT-HPNE) decreased to 65%. This study highlights the ability of PLGA nanoparticles to deliver vitamin D-3 into cancer cells, with major effects regarding cancer cell cycle arrest and major changes in the cell morphological features

    Patient-physician discordance in assessment of adherence to inhaled controller medication: a cross-sectional analysis of two cohorts

    Get PDF
    We aimed to compare patient's and physician's ratings of inhaled medication adherence and to identify predictors of patient-physician discordance.(SFRH/BPD/115169/2016) funded by Fundação para a Ciência e Tecnologia (FCT); ERDF (European Regional Development Fund) through the operations: POCI-01-0145-FEDER-029130 ('mINSPIRERS—mHealth to measure and improve adherence to medication in chronic obstructive respiratory diseases—generalisation and evaluation of gamification, peer support and advanced image processing technologies') cofunded by the COMPETE2020 (Programa Operacional Competitividade e Internacionalização), Portugal 2020 and by Portuguese Funds through FCT (Fundação para a Ciência e a Tecnologia).info:eu-repo/semantics/publishedVersio
    • …
    corecore