44 research outputs found

    Robust Adaptive Least Squares Polynomial Chaos Expansions in High-Frequency Applications

    Full text link
    We present an algorithm for computing sparse, least squares-based polynomial chaos expansions, incorporating both adaptive polynomial bases and sequential experimental designs. The algorithm is employed to approximate stochastic high-frequency electromagnetic models in a black-box way, in particular, given only a dataset of random parameter realizations and the corresponding observations regarding a quantity of interest, typically a scattering parameter. The construction of the polynomial basis is based on a greedy, adaptive, sensitivity-related method. The sequential expansion of the experimental design employs different optimality criteria, with respect to the algebraic form of the least squares problem. We investigate how different conditions affect the robustness of the derived surrogate models, that is, how much the approximation accuracy varies given different experimental designs. It is found that relatively optimistic criteria perform on average better than stricter ones, yielding superior approximation accuracies for equal dataset sizes. However, the results of strict criteria are significantly more robust, as reduced variations regarding the approximation accuracy are obtained, over a range of experimental designs. Two criteria are proposed for a good accuracy-robustness trade-off.Comment: 17 pages, 7 figures, 2 table

    An hp‐adaptive multi‐element stochastic collocation method for surrogate modeling with information re‐use

    Get PDF
    This article introduces an hp‐adaptive multi‐element stochastic collocation method, which additionally allows to re‐use existing model evaluations during either h‐ or p‐refinement. The collocation method is based on weighted Leja nodes. After h‐refinement, local interpolations are stabilized by adding and sorting Leja nodes on each newly created sub‐element in a hierarchical manner. For p‐refinement, the local polynomial approximations are based on total‐degree or dimension‐adaptive bases. The method is applied in the context of forward and inverse uncertainty quantification to handle non‐smooth or strongly localized response surfaces. The performance of the proposed method is assessed in several test cases, also in comparison to competing methods

    Quadrupole Magnet Design based on Genetic Multi-Objective Optimization

    Full text link
    This work suggests to optimize the geometry of a quadrupole magnet by means of a genetic algorithm adapted to solve multi-objective optimization problems. To that end, a non-domination sorting genetic algorithm known as NSGA-III is used. The optimization objectives are chosen such that a high magnetic field quality in the aperture of the magnet is guaranteed, while simultaneously the magnet design remains cost-efficient. The field quality is computed using a magnetostatic finite element model of the quadrupole, the results of which are post-processed and integrated into the optimization algorithm. An extensive analysis of the optimization results is performed, including Pareto front movements and identification of best designs.Comment: 22 pages, 7 figure

    Optimization and uncertainty quantification of gradient index metasurfaces

    Get PDF
    The design of intrinsically flat two-dimensional optical components, i.e., metasurfaces, generally requires an extensive parameter search to target the appropriate scattering properties of their constituting building blocks. Such design methodologies neglect important near-field interaction effects, playing an essential role in limiting the device performance. Optimization of transmission, phase-addressing and broadband performances of metasurfaces require new numerical tools. Additionally, uncertainties and systematic fabrication errors should be analysed. These estimations, of critical importance in the case of large production of metaoptics components, are useful to further project their deployment in industrial applications. Here, we report on a computational methodology to optimize metasurface designs. We complement this computational methodology by quantifying the impact of fabrication uncertainties on the experimentally characterized components. This analysis provides general perspectives on the overall metaoptics performances, giving an idea of the expected average behavior of a large number of devices

    Adaptive approximations for high-dimensional uncertainty quantification in stochastic parametric electromagnetic field simulations

    No full text
    The present work addresses the problems of high-dimensional approximation and uncertainty quantification in the context of electromagnetic field simulations. In the presence of many parameters, one faces the so-called curse of dimensionality. The focus of this work lies on adaptive methods that mitigate the effect of the curse of dimensionality, and therefore enable otherwise intractable uncertainty quantification studies. Its application scope includes electromagnetic field models suffering from moderately high-dimensional input uncertainty. However, the presented methods can be used in a black-box fashion and are therefore applicable to other types of problems as well

    Adaptive approximations for high-dimensional uncertainty quantification in stochastic parametric electromagnetic field simulations

    Get PDF
    The present work addresses the problems of high-dimensional approximation and uncertainty quantification in the context of electromagnetic field simulations. In the presence of many parameters, one faces the so-called curse of dimensionality. The focus of this work lies on adaptive methods that mitigate the effect of the curse of dimensionality, and therefore enable otherwise intractable uncertainty quantification studies. Its application scope includes electromagnetic field models suffering from moderately high-dimensional input uncertainty. However, the presented methods can be used in a black-box fashion and are therefore applicable to other types of problems as well
    corecore