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Abstract
This article introduces an hp-adaptive multi-element stochastic collocation
method, which additionally allows to re-use existing model evaluations during
either h- or p-refinement. The collocation method is based on weighted Leja
nodes. After h-refinement, local interpolations are stabilized by adding and sort-
ing Leja nodes on each newly created sub-element in a hierarchical manner.
For p-refinement, the local polynomial approximations are based on total-degree
or dimension-adaptive bases. The method is applied in the context of forward
and inverse uncertainty quantification to handle non-smooth or strongly local-
ized response surfaces. The performance of the proposed method is assessed in
several test cases, also in comparison to competing methods.
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1 INTRODUCTION

Prediction and optimization with computational models is now routinely carried out in many fields of science and
engineering. For instance, reliable predictions require the propagation and quantification of uncertainties1 related to
parameter calibration from noisy and limited data. The so-called non-intrusive approach is widely adopted, where com-
puter codes are treated as black box functions from model parameters to quantities of interest (QoIs). In this way,
restructuring and modifying complex software is avoided. Exemplarily, in forward uncertainty quantification (UQ),2 also
referred to as uncertainty propagation, non-intrusive methods evaluate the model at selected points of the input vec-
tor, which are generated according to the underlying probability distribution. Similarly, in inverse UQ,3 repeated model
evaluations are required to build the likelihood function at individual elements of a Markov chain.

Even when large computational resources are available, such multi-query simulations with complex models present
a widely acknowledged challenge. This fact has led to significant research efforts in the area of surrogate modeling,4,5
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for example, by means of neural networks,6 Gaussian processes,7 or polynomial chaos expansions (PCEs).8 Surro-
gate modeling can be carried out efficiently if the response function is sufficiently smooth and if the function varies
moderately over the parameter space. However, there exist many examples in engineering and mechanics where the
response is discontinuous or exhibits strong variations and sharp transitions.9 In this case, most surrogate modeling
techniques become too computationally expensive or altogether unreliable, thus, Monte Carlo methods are usually pre-
ferred. Nevertheless, an efficient sampling scheme is adapted to a specific simulation task and the computed model
responses cannot be re-used in a different context. This is a major bottleneck of pure sampling approaches and a
strong motivation to develop flexible and robust surrogate models, which can be applied even if the model response is
non-smooth.

Surrogate modeling for response surfaces with a reduced regularity typically involves some sort of local refinement. For
instance, the spatially adaptive sparse grid method10 allows for adaptive and hierarchical local refinement in subregions of
the parameter domain. A combination of spatial and dimension-wise adaptivity has also been proposed.11 Alternatively,
the family of multi-element methods12-16 presents a class of approximation techniques which have been successfully
applied in the UQ context for addressing non-smooth stochastic response functions. In a multi-element method, the
parameter space is decomposed into subdomains referred to as elements, where local polynomial basis functions are used.
Here, on the one hand, one can opt for a discontinuity detection method, which first estimates a discontinuity and then
splits elements accordingly. For example, the discontinuity detection can be based on spatially adaptive sparse grids and
the element-wise restriction of sparse grid points is subsequently used for local polynomial approximation.17 A difficulty
to be addressed here is the missing structure of the elements after splitting, which has previously been handled by the least
orthogonal interpolation method.17 On the other hand, the element splitting can be based on hypercubes or simplices,
which does not require any resolution of the discontinuity, however, applications in higher dimensions are more difficult
to realize. We note that, local refinement can equally be applied in a Monte Carlo setting, for example, using stratified
sampling on simplices.18

Here, we focus on the non-intrusive multi-element stochastic collocation method on hypercubes for forward and
inverse UQ. Although several proposals for multi-element collocation exist,16,17,19-23 a number of challenges remain to be
addressed. Most notably, computational efficiency considerations require to limit the number of collocation points, which
is problematic since existing points do not necessarily fit to a collocation pattern once the subdomains in the param-
eter space are refined. Another challenge is to efficiently implement dimension adaptivity to avoid using large tensor
grids in the parameter domain. Considering the worst-case where each parameter domain is split into two parts in each
refinement step, the complexity of multi-element methods scales with 

(
2N), where the exponent refers to the num-

ber of random inputs and the base to the subdomain splitting. This bottleneck, as mentioned above, is known to affect
most multi-element methods suggested in the literature.24,25 However, multi-element collocation methods can greatly
benefit from hp-adaptivity concepts, which are well established in the finite element literature.26 In this context, adap-
tive h-refinement, also referred to as h-adaptivity, refers to the adaptive decomposition of the computational domain
into subdomains where local polynomial approximations are developed, while p-adaptivity refers to increasing the local
polynomial degree within a subdomain. These concepts have already been successfully applied for UQ purposes in the
context of the stochastic Galerkin method.27 However, multi-element collocation methods so far rely on h-adaptivity
only. In the best case, the hp-adaptive multi-element approach chooses the type of refinement that provides the high-
est convergence rate. That is, in elements where the function is locally analytic, p-refinement is carried out, leading
to exponential convergence. Contrarily, h-refinement is performed in elements where the function shows reduced reg-
ularity, leading to algebraic convergence. For most practically relevant cases, this leads to large elements with a high
regularity, where p-refinement is performed, and a fine grid around areas with reduced regularity, where h-refinement is
preferred.

In this work, we present a new hp-adaptive multi-element stochastic collocation method, which re-uses existing model
evaluations during both h- and p-refinement. While re-using model data after splitting the parameter domain is easily
possible for regression methods, this is not true for approaches relying on structured grids. Our method solves this problem
through the use of weighted Leja collocation points.28 A given sequence of collocation points can be stabilized by adding
additional Leja points in a greedy way. Interpolation stability is further ensured by sorting the collocation points according
to the Leja ordering. Hence, on each element the collocation scheme can be stabilized by enriching the collocation set
obtained after splitting. This information re-use improves the overall efficiency of the method, which is demonstrated with
several examples, also in comparison to existing approaches. Although our idea of stabilizing subsets of Leja sequences
after multielement refinement is established here in the context of hypercubes, extensions to unstructured elements could
be possible as well, for instance, with Leja sequences outlined in Reference 29.
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Moreover, the weighted Leja nodes naturally handle arbitrary parameter distributions, which is particularly
advantageous in the case of h-refinement with non-uniform distributions. For p-adaptivity, total degree (TD) and
dimension-adaptive30,31 basis representations are utilized, but other choices of basis representations, for example, based
on Smolyak sparse grids, can be easily implemented. The dimension-adaptive algorithm relies on the nestedness and
granularity of Leja points, which allows to increase the polynomial order in each dimension one-by-one, and exploits
possible parameter anisotropies.

Our approach contributes to the growing literature on adaptive surrogate models in the field of UQ and can be used
both in forward and inverse UQ analysis, which we illustrate in the numerical examples. As a consequence of the under-
lying tensor product structure in case of h-refinement, we restrict ourselves to problems with low to moderate ((10))
dimensionality. In many practically relevant cases, high dimensional problems are reduced to moderate dimensions with
the help of engineering experience and a-priori knowledge. Nevertheless, the remaining parameters may have a signif-
icant impact on the model response and can result in strong variations or discontinuities. The proposed approach is
suitable to handle these types of problems.

The remaining of this article is structured as follows. In Section 2, we introduce the notation, the problem setting
and some necessary preliminaries on stochastic collocation methods. Section 3 is concerned with stochastic collocation
on Leja grids, based either on hierarchical interpolation or on PCE. In Section 4, we introduce our novel hp-adaptive
multi-element stochastic method based on Leja grids, which additionally allows for re-using model evaluations after
either h- or p-refinement. Numerical results showcasing the advantages of the proposed multi-element stochastic
collocation method are reported in Section 5. Finally, conclusions are drawn in Section 6.

2 MODEL PROBLEM AND PRELIMINARIES

In this section, we introduce the notation and the stochastic setting in particular. We also present the main ideas of
stochastic collocation as a surrogate modeling approach for forward and inverse problems. Details of the collocation
method are postponed until Section 3. Finally, we introduce a model problem based on a partial differential equation
(PDE).

2.1 Notation

We consider a parameter-dependent model that receives as input a parameter vector and estimates an output, represented
through the map

g ∶ x → g(x). (1)

In (1), x ∈ RN denotes the input parameter vector and g(x) ∈ RNout the model evaluation for the given input parameters.
In forward analyses, for example, in the context of uncertainty propagation, g(x) is typically called the QoI. In inverse
problem settings, g(x) represents the map from parameters to observations or the likelihood function. In cases where an
evaluation g(x) is computationally expensive, for example, the model in question is a high-fidelity numerical solver, an
inexpensive approximation g̃(x) ≈ g(x) that can reliably replace the original model is often desirable. This is particularly
true for multi-query tasks in UQ, optimization, or design space exploration. We refer to such an approximation as a
surrogate model.

In the context of this work, the inputs x are assumed to be realizations of independent random variables (RVs) Xn, n =
1, 2, … ,N, which are collected in the multivariate RV X = (X1,X2, … ,XN)⊤, also referred to as a random vector. The
random vector X is defined on the probability space (Θ,Σ,P), where Θ denotes the sample space, Σ the sigma algebra of
events, and P ∶ Σ→ [0, 1] the probability measure. We further introduce the image space Ξ ⊂ RN such that X ∶ Θ → Ξ,
equivalently, X(𝜃) = x with 𝜃 ∈ Θ and x ∈ Ξ, as well as the probability density function (PDF) 𝜋X(x) ∶ Ξ→ R≥0. Note
that the notation differentiates between a random vector X and a realization x = X(𝜃). Recalling that the individual RVs
Xn, n = 1, … ,N, are mutually independent, it holds that 𝜋X(x) =

∏N
n=1𝜋Xn (xn) and Ξ = Ξ1 × · · · × ΞN , where 𝜋Xn (xn) and

Ξn refer to the marginal (univariate) PDFs and image spaces, respectively. Then, the model output is a RV dependent on
the input random vector X. Note that the model itself remains purely deterministic, that is, the uncertainty in the model
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output is caused only due to the random input parameters. Accordingly, a RV realization x corresponds to an estimation
g(x) of fixed value.

2.2 Surrogate modeling for forward and inverse problems

The term stochastic collocation32,33 refers to a class of sampling-based methods where a model g is evaluated (sampled)
on a set of so-called collocation points  =

{
xj
}J

j=1. The pairs of collocation points and corresponding model evaluations
{

xi, g(xj)
}J

j=1 are then utilized to compute a surrogate model g̃(x) ≈ g(x), which typically takes the form

g̃(x) =
I∑

i=1
𝛽iBi(x), (2)

where 𝛽i ∈ RNout are coefficients, Bi appropriately chosen basis functions, and I the size of the basis. In a collocation
approach, the coefficients are determined based on the condition

g(xj) = g̃(xj), ∀j = 1, … , J, (3)

where I = J, resulting in a linear system of equations for 𝛽i. The well-known Lagrange basis even results in 𝛽i = g(xi).
A major challenge for surrogate models in the form (2) is the rapidly growing size of the basis when the input dimension
is large. In this case, constructing a sparse basis has often proven to be useful.32,34 Even in case of sparse approximation,
the construction of the polynomial basis relies on tensor product polynomials, hence, the one-dimensional case serves as
the starting point. This approach is adopted in Section 3.

Before discussing details of the hp-adaptive collocation approach, we briefly outline the role of surrogate models in
inverse and forward UQ. In forward UQ, the goal is to compute moments or a distribution function of the QoI. This can
be achieved, either by sampling the inexpensive surrogate model, or by choosing a suitable basis from which the sought
quantities can be readily obtained. The polynomial chaos basis, for instance, allows to infer the moments directly from
the basis coefficients without involving any additional sampling routine.8,35 In inverse UQ, an important object is the
likelihood function which, in the common case of Gaussian noise, reads

L(x|b) = exp
(
−1

2
||b − (x)||𝚺−1

)
, (4)

where b ∈ RD denotes the observation vector and 𝚺 the noise covariance matrix. Then,  ∶ RN → RD represents the
nonlinear relationship between input parameters and observations. In (4), the model-data mismatch is measured in the
discrete Euclidean norm, weighted with the inverse covariance matrix. When running a Markov chain Monte Carlo
analysis, the likelihood function and hence, the model included in , needs to be evaluated for each entry of the chain.
To reduce the large computational workload, a surrogate model g̃(x) ≈ g(x) = (x) can be employed.36 A more recent
approach constructs a surrogate for the likelihood as g̃(x) ≈ g(x) = L(x|b), which allows to avoid any sampling-based
analysis.37 However, in the large data—small noise regime, the likelihood function is highly concentrated and global sur-
rogate modeling is difficult. Adaptive38 and possibly multilevel39 approaches are a popular remedy in this case. Another
possibility is to use the spectral stochastic embedding (SSE) method.37 Other approaches are based on transport maps.40,41

We will show in Section 5, that our multi-element stochastic collocation method is also capable of handling such highly
concentrated likelihood functions.

2.3 A PDE-based model problem

For the sake of concreteness, we consider the Helmholtz equation with a stochastic inhomogeneous refractive index as a
model problem. However, the formulation derived in this subsection will be general enough to cover other problems as
well. Let D = [0, 1]2 denote the computational domain with boundaries

Γ1 = {(r1, r2) | r1 = 0, r2 ∈ [0, 1]}, Γ2 = {(r1, r2) | r1 = 1, r2 ∈ [0.3, 0.7]}, Γ3 = 𝜕D ⧵ (Γ1 ∪ Γ2) .
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Let 𝜕
𝜈

denote the derivative with respect to the outgoing normal vector. The strong form of the problem reads

Δu(x; r) + k2n(x; r)u(x; r) = 0 r ∈ D, (5a)
𝜕

𝜈

u(x; r) = g(r) r ∈ Γ1, (5b)
𝜕

𝜈

u(x; r) = (i𝛽 − 𝛼)u(x; r) r ∈ Γ2, (5c)
𝜕

𝜈

u(x; r) = 0 r ∈ Γ3, (5d)

for 𝜋X-almost all x ∈ Ξ. The uncertainty in the index n is modeled with a log-Karhunen–Loève expansion of the form

n(x; r) = exp

(

n0(r) +
N∑

j=1
xjΨj(r)

)

. (6)

Here, the modes Ψj(r) =
√
𝜆j𝜑j(r) are obtained from the squared exponential kernel with correlation length l = 0.05 and

standard deviation 𝜎 = 1. In the numerical experiments we set n0 = 0, see Section 5.2.4.
We consider a Ξ-strong/D-weak form based on H1(D), where we seek for u(x) ∈ H1(D) 𝜋X-almost everywhere in Ξ

subject to

∫D
∇u(x) ⋅ ∇v∗ dr − k2

∫D
n(x)u(x)v∗ dr −

∫Γ2

(i𝛽 − 𝛼)u(x)v∗dr

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=a(x;u,v)

=
∫Γ1

gv∗dr

⏟⏞⏟⏞⏟

=l(v)

, ∀v ∈ H1(D), (7)

where ∗ refers to the complex conjugate and where u(x) is short for u(x; ⋅). We apply a standard, lowest order, piecewise
continuous finite element method on a regular grid with maximum mesh size h, to compute a numerical solution uh(x) ∈
Vh ⊂ H1(D), subject to

a(x;uh, vh) = l(vh), ∀vh ∈ Vh. (8)

The QoI is here obtained as a linear functional of the solution, that is,

g(x) = q(uh(x)), q ∈ V∗
h . (9)

The PDE-background of the problem provides more structure, which we exploit to derive an error indicator for the
hp-adaptive method.

3 STOCHASTIC COLLOCATION ON LEJA GRIDS

Next, we elaborate on the concept of hierarchical Leja collocation in one- and multiple dimensions and its relation to
polynomial chaos surrogates. These topics have been previously presented in the literature in detail, nevertheless, we
shortly re-iterate the relevant concepts for the ease of the reader.

3.1 Leja sequences

In their original form, Leja sequences42 are sequences of points {xi}i≥0, xi ∈ [−1, 1], ∀i ≥ 0, where the initial point x0 is
chosen arbitrarily within [−1, 1] and the remaining points are computed by solving the optimization problem

xi = arg max
x∈[−1,1]

i−1∏

k=0
|x − xk| . (10)

A point sequence produced by formula (10) is an unweighted Leja sequence. Weighted Leja sequences are constructed by
incorporating a continuous and positive weight function in the definition of Leja sequences.28 Assuming that the weight
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function is a PDF 𝜋X (x) ∶ Ξ→ R≥0, the points of the corresponding weighted Leja sequence are given as

xi = arg max
x∈Ξ

√
𝜋X (x)

i−1∏

k=0
|x − xi| , (11)

where again the initial Leja point x0 is chosen arbitrarily within the image space Ξ.
Leja points are known to perform well when employed as interpolation or quadrature nodes.31,43-46 With respect to

interpolation in particular, the Lebesgue constant of Leja sequence based interpolation grids is known to grow subex-
ponentially,47-49 thus resulting in stable interpolations. Additionally, interpolation and quadrature grids with respect to
any continuous PDF can be constructed by using weighted Leja sequences.39,50-52 Moreover, due to the fact that Leja
sequences are by definition nested, that is, {xi}j

i=0 ⊂ {xi}j+1
i=0, they allow for re-using readily available Leja points and model

evaluations on those points in case the sequence is further expanded. Due to the nestedness property, Leja points are
natural candidates for constructing sparse interpolation or quadrature grids.30,38,53-55 Note that nested interpolation and
quadrature grids can be obtained with other types of nodes, such as Clenshaw–Curtis.56 However, Leja sequences have
the additional attractive feature of retaining the nestedness property even if a single point is added to the sequence, thus
allowing for arbitrary grid granularity. Nestedness and grid granularity become additionally important when considering
efficient h-refinement, as discussed in Section 4.

3.2 Hierarchical interpolation on Leja grids

In interpolation based stochastic collocation methods,32-34 the surrogate model g̃(x) ≈ g(x) is a global polynomial approx-
imation computed by means of interpolation. For simplicity, in the following we assume a scalar model output g(x) ∈ R,
however, the extension to vector-valued outputs is straightforward.

Considering a model g(x) dependent on a single parameter and an interpolation grid j = {xi}j
i=0, a Lagrange

interpolation based approximation is given as

g̃(x) = j[g](x) =
j∑

i=0
g (xi) lj

i(x), (12)

where lj
i are Lagrange polynomials of degree j, defined as

lj
i(x) =

j∏

k=0,k≠i

x − xk

xi − xk
, l0 = 1. (13)

Assuming that the interpolation grid j coincides with a Leja sequence, a sequence of nested grids can be defined, such
that 0 = {x0} ⊂ 1 = {x0, x1} ⊂ · · · ⊂ j =

{
x0, x1, … , xj

}
, where each grid defines an interpolation operator i[g](x),

i = 0, 1, … , j. Then, replacing the Lagrange polynomials with the hierarchical polynomials30

hi(x) =
i−1∏

k=0

x − xk

xi − xk
, h0(x) = 1, (14)

of polynomial degree i, i = 0, 1, … , j, a sequential interpolation formula can be derived, such that

g̃(x) = j[g](x) =
j∑

i=0
sihi(x) =

j∑

i=0
(g (xi) − i−1[g] (xi)) hi(x), (15)

where the coefficients si are called the hierarchical surpluses.57 Note that −1 is a null operator, that is, −1[g](x) = 0,
accordingly, s0 = g(x0). We shall refer to the interpolation format (15) as hierarchical interpolation.

The interpolation formats (12) and (15) are in fact equivalent, as the interpolating polynomial is unique for a given
interpolation grid irrespective of the choice of the polynomial basis.58 The hierarchical representation (15) offers the
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advantage that, if the Leja sequence based interpolation grid is expanded with new nodes, the already computed basis
polynomials remain unchanged. Accordingly, each hierarchical polynomial hi, i = 0, 1, … , j, has a degree equal to i which
is unique. Irrespective of the choice of basis polynomials, a crucial advantage of using Leja sequences as interpolation
grids is that the readily available model evaluations g(xi), xi ∈ j, i = 0, 1, … , j, that are used to construct the interpolation
j[g](x), can be re-used for the interpolation j+1[g](x), due to the fact that j ⊂ j+1. Accordingly, the model needs to be
evaluated only on the new Leja point xj+1, where

{
xj+1

}
= j+1 ⧵ j.

Moving to an N-variate model g(x), we introduce a multi-index notation such that a multi-index j = (j1, … , jN) can
be uniquely associated with the multivariate Leja node xj =

(
x1,j1 , … , xN,jN

)
, the multivariate hierarchical polynomial

Hj(x) =
N∏

n=1
hjn

n (xn), (16)

and the tensor grid

j = 1,j1 × 2,j2 × · · · × N,jN , (17)

where each univariate grid n,jn =
{

xn,0, xn,1, … , xn,jn

}
is assumed to be a Leja sequence. A multivariate hierarchical

interpolation scheme can then be derived as follows. We consider a downward closed multi-index set Λ, such that

∀j ∈ Λ ⇒ j − en ∈ Λ,∀n = 1, … ,N, (18)

where en denotes the unit vector in the nth dimension. The associated interpolation grid is given by

Λ =
⋃

j∈Λ
j. (19)

Since each multi-index j ∈ Λ uniquely defines a multivariate Leja node xj ∈ Λ, it holds that #Λ = #Λ, where #
denotes the cardinality of a set. Then, a sequence of nested, downward closed multi-index sets (Λw)Ww=1, #Λ = W , can be
defined, such thatΛw =

{
j1, j2, … , jw

}
,Λw−1 ⊂ Λw (Λ0 = ∅), #Λw = w, andΛw ⧵ Λw−1 =

{
jw
}

. This also implies thatΛ1 ={
j1 = 0 = (0, 0, … , 0)

}
. A corresponding grid sequence

(
Λw

)W
w=1 is similarly defined, where Λw =

{
xj1
, xj2

, … , xjw

}
,

Λw−1 ⊂ Λw (Λ0 = ∅), #Λw = w, and Λw ⧵ Λw−1 =
{

xjw

}
, that is, a single Leja node is added to the next grid in

sequence, as in the univariate case. Simplifying the notation to xjw
= xw and Hjw

(x) = Hw(x), the multivariate hierarchical
interpolation reads

g̃(x) = Λ[g](x) =
∑

j∈Λ
sjHj(x) =

W∑

w=1
swHw(x) =

W∑

w=1

(
g (xw) − Λw−1[g] (xw)

)
Hw(x), (20)

where s1 = s0 = g(x1) = g(x0), that is, Λ0 is a null operator, similar to the univariate case.
The hierarchical Leja interpolation (20) can be constructed by means of a so-called dimension-adaptive algorithm,

which sequentially adds terms of high impact to the polynomial approximation, while neglecting non-influential terms.
This algorithm was first suggested for adaptive, sparse quadrature.57 Similar algorithms have been employed for Leja
based, dimension-adaptive interpolation.28,30,31 In brief, the dimension-adaptive Leja interpolation algorithm consists of
the following steps:

1. A hierarchical interpolation based on a downward closed multi-index set Λ is assumed to exist, along with the cor-
responding Leja interpolation grid Λ. Otherwise, the algorithm is initialized with the zero multi-index, such that
Λ = {0}. This set is referred to as the active set.

2. The set of admissible multi-indices is computed, denoted as Λadm, such that Λ ∪ Λadm is downward closed. The
corresponding admissible Leja nodes are also computed.

3. The hierarchical surplus corresponding to each admissible multi-index is computed.
4. The admissible multi-index with the maximum hierarchical surplus in absolute value is added to the active multi-index

set. The corresponding Leja node is added to the interpolation grid.
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5. The steps 2–5 are repeated until the desired approximation accuracy or the maximum allowed number of model
evaluations is reached.

After the termination of the algorithm, the final interpolation is constructed using both the active and the admissible
multi-indices, such that no Leja nodes and corresponding model evaluations remain unused.

Alternatively, Leja based interpolations can be constructed using interpolation grids with an a priori defined struc-
ture, for example, tensor product, TD, hyperbolic cross, or Smolyak sparse grids.32 In this work, aside from the
dimension-adaptive algorithm described above, TD grids are also employed, in which case the multi-index set is given as

ΛTD =
{

j ∶ ||j||1 ≤ P,P ∈ Z≥0
}
. (21)

These two choices regarding the employed multi-index set are mainly motivated by the fact that they greatly simplify the
transformation to a PCE basis, see Section 3.3.

3.3 Polynomial chaos expansion on Leja grids

Similar to the stochastic collocation method presented in Section 3.2, the PCE method59,60 also produces a global polyno-
mial approximation g̃(x) ≈ g(x), however, instead of Lagrange or hierarchical polynomials, the polynomial basis consists
of orthonormal polynomials with respect to the PDF of the input parameters. Again, in the following, we consider a scalar
model output g(x) ∈ R for simplicity. The method can be applied to address vector-valued model outputs as well.

The PCE is given as

g̃(x) =
∑

p∈Λ
cpΨp(x), (22)

where cp are scalar coefficients and Ψp(x) =
∏N

n=1𝜓
pn
n (xn) are multivariate polynomials that satisfy the orthonormality

condition

E
[
ΨpΨq

]
=
∫Ξ
Ψp(x)Ψq(x)𝜋X(x) dx = 𝛿pq, (23)

where E[⋅] denotes the expectation operator, 𝛿pq =
∏N

n=1𝛿pnqn , and 𝛿ij is the Kronecker delta. The multi-index set Λ now
comprises multi-indices corresponding to the polynomial degrees of the PCE polynomials, that is, p = (p1, … , pN).

Note that, assuming a readily available Lagrange or hierarchical interpolation, an equivalent PCE can be computed
with a basis transformation to orthonormal polynomials.61-63 As previously noted in Section 3.2, in this work, such trans-
formations take place using Leja interpolations based either on TD multi-index sets,32 which have an a priori defined
structure, or multi-index sets constructed with a dimension-adaptive algorithm. In both cases, there exists a one-to-one
relation between the hierarchical and orthonormal polynomials in terms of their degrees. Therefore, the interpolation
and PCE multi-index sets are identical and the basis transformation is greatly simplified.64

An important aspect of the PCE is that it provides UQ metrics regarding the approximated model output, which
are obtained with negligible computational cost by simply post-processing the PCE’s terms. In particular, exploit-
ing the orthonormality property of the basis polynomials, the mean value and the variance of the output can be
estimated as

𝜇 = c0, (24)

𝜎

2 =
∑

p∈Λ⧵{0}
c2

p. (25)

Note that each PCE coefficient cp, p ∈ Λ ⧵ {0}, corresponds to a partial variance that contributes to the total variance
of the model output. Based on the known connection between variance based sensitivity analysis metrics and the PCE
method,35,65 all PCE coefficients except for c0 can be interpreted as sensitivity indicators.53,66
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4 MULTI-ELEMENT STOCHASTIC COLLOCATION WITH ADAPTIVE
REFINEMENT

Global polynomial approximations face major difficulties in terms of accuracy and convergence when applied to problems
with discontinuities in the parameter space. Additionally, steep gradients or large variations in the objective function also
hinder the convergence of global approximation approaches. To address this bottleneck, several multi-element approxima-
tion techniques have been proposed,12,15-17,19,20,67 where the parameter space is decomposed into subspaces of improved
regularity. Local polynomial approximations are developed in the subspaces, which are subsequently combined to pro-
vide a global surrogate model. Borrowing terminology from the finite element method (FEM) literature,68-72 we call
h-refinement the refinement of the parameter domain decomposition with additional subdomains and p-refinement the
refinement of a local polynomial approximation with additional terms. In the following, we build upon the Leja based
hierarchical interpolation and PCE methods presented in Section 3 and develop a multi-element polynomial approxi-
mation method which refines adaptively both the parameter domain decomposition and the polynomial approximations
according to the particularities of the problem at hand.

4.1 Multi-element hierarchical interpolation and polynomial chaos expansion

Following the work of Wan and Karniadakis,15 let the image space of the random vector X = (X1, … ,XN) be given
as Ξ = [a1, b1] × [a2, b2] × · · · × [aN , bN], where an, bn ∈ R, n = 1, … ,N, with extension to infinity. The image space is
decomposed into K non-overlapping hypercubes, subsequently referred to as elements, such that Ξ=

⋃K
k=1dk, where

each element dk is defined as dk = d(k)1 × d(k)2 × … × d(k)N with d(k)n = [a(k)n , b(k)n ) if b(k)n ≠ bn, respectively d(k)n = [a(k)n , b(k)n ] if
b(k)n = bn.

We proceed by introducing conditional expectations and local densities associated to the partition {dk}. To that end,
let 1k(x) denote the indicator function defined as

1k(x) =

{
1, x ∈ dk,

0, else.
(26)

We write Yk = 1k(X) in the following. Then,

E[X|Yk = 1] = E[XYk]
P(Yk = 1)

, k = 1, … ,K. (27)

We then use the definition of a PDF via an expected value

𝜋X (x) = E[𝛿(X − x)], (28)

where 𝛿 denotes the Dirac delta distribution, to obtain conditional PDFs for the partition. In particular, we obtain

𝜋X(x|Yk = 1) = E[𝛿(X − x)Yk]
P(Yk = 1)

, (29)

𝜋k(x(k)) = 𝜋X(x(k)|Yk = 1) =
𝜋X

(
x(k)

)

𝜚k
, for x = x(k) ∈ dk. (30)

The normalization factor 𝜚k = Pr(Yk = 1) is determined as

𝜚k =
N∏

n=1∫

b(k)n

a(k)n

𝜋Xn(xn) dxn. (31)

Note that P(Yk = 1) ≠ 0 by construction, since a(k)n , respectively b(k)n are chosen such that 𝜚k ≠ 0, see Section 4.2.4.
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In each element, a local interpolation grid  (k)
Λ(k)

is generated following a local multi-index set Λ(k). The weighted Leja
points in each element are obtained using the local PDFs, where the local univariate Leja sequences are defined as

x(k)n,jn
= arg max

x∈d(k)n

√
𝜋Xn (x) ∕𝜚k

jn−1∏

i=0

|||x − x(k)n,i
||| , (32)

and correspond to local univariate interpolation grids  (k)n,jn
=

{
x(k)n,0, x

(k)
n,1, … , x(k)n,jn

}
⊂ d(k)n . Local hierarchical polynomial

interpolations g̃k
(
x(k)

)
= Λ(k) [g](x(k)), x(k) ∈ dk, k = 1, … ,K, are then computed as described in Section 3.2 and are

subsequently transformed into local PCEs as discussed in Section 3.3.
Once available, the local surrogate models are combined to form global surrogate models as

g̃(x) =
K∑

k=1
1k(x)g̃k(x). (33)

Using the PCE based global surrogate model, the mean and variance of the output can be estimated as

𝜇 =
K∑

k=1
c(k)0 𝜚k, (34)

𝜎

2 =
K∑

k=1

(
𝜎

2
k + (c

(k)
0 − 𝜇)2

)
𝜚k, (35)

where the local variances 𝜎2
k are estimated as in (25).15 For uniformly distributed parameters, the local RVs X(k) also follow

a uniform distribution which can be easily normalized to the domain dk, that is, no additional costs arise for computing the
normalization factors in (31). This also allows the further use of Legendre polynomials for the PCE basis.15 If non-uniform
distributions are employed, the local orthonormal polynomials must be constructed numerically.67

4.2 hp-adaptivity

Adaptive approximation strategies based on hp-refinement are widely used for FEM based approximations.68-72 Typically,
these strategies follow the step sequence

Solve ⇒ Estimate ⇒ Mark ⇒ Refine,

which is iterated until the desired approximation accuracy has been reached. The flowchart shown in Figure 1 provides a
systematic overview of the hp-refinement procedure followed in this work for developing polynomial approximations by
means of the suggested multi-element stochastic collocation method. The individual steps are explained in detail next.

4.2.1 Solve

Given a decomposition of the parameter (image) space Ξ=
⋃K

k=1dk, a hierarchical interpolation based on the local Leja
grid  (k)

Λ(k)
is computed in each element dk. Subsequently, the local hierarchical polynomial bases are transformed to

orthonormal ones, thus obtaining a local PCE in each element.

4.2.2 Estimate

We consider two settings for error estimation. On the one hand, we rely on the structure of the PDE model problem
of Section 2.3 and employ a duality-based error indicator. However, this approach requires access to the solution and
matrices after finite element assembly and is therefore not always applicable. Therefore, we employ error indicators based
on partial variances as a generally applicable alternative.
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F I G U R E 1 Sketch of the hp-adaptive multi-element stochastic collocation method.

Adjoint-based error estimation
Similar to previous works,54,73 we compute the adjoint variable zh(x) ∈ Vh, subject to

a(x; vh, zh) = q(vh), ∀vh ∈ Vh. (36)

Then, we can obtain the pointwise representation of the surrogate error

g(x) − g̃(x) = l(zh(x)) − a(x; ũh(x), zh(x)), (37)

with g̃(x) = q(ũh(x)). Even if (37) is not computable, because it would require knowledge of the adjoint for every param-
eter value, an accurate representation can be obtained by employing an adjoint surrogate z̃h, which results in the error
indicator

𝜂(x) = l(z̃h(x)) − a(x; ũh(x), z̃h(x)). (38)

Finally, we employ local error indicators

𝜂k = ||𝜂(x(k))||Lp
𝜋k
(dk) =

(

∫dk

|𝜂(x(k))|p
𝜋k(x(k))dx(k)

)1∕p

, (39)

where p = 1, 2 are common choices in our adaptive algorithm. Note that a Monte Carlo approach is used to estimate the
integral, since the error indicator is cheap to evaluate. The surrogate models ũh(x) and z̃h(x) are created in addition to the
surrogate model of the QoI. However, they share the same multi-index sets Λ(k), equivalently, the same polynomial bases
employed in g̃(x).

Variance-based error estimation
Previous works have suggested error estimators for TD and Smolyak bases.15,16 In case of a TD basis, the error indicator
reads

𝜎

−2
k

∑

p∈Λ(k)∶||p||1=Pk

(
c(k)p

)2
, (40)
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(A) (B)

F I G U R E 2 Visualization of index sets for N = 2 dimensions. The blue indices are employed in the error indicator. Squares show active
indices, crosses the admissible indices. (A) Total degree basis. (B) Dimension-adaptive basis.

where Pk = maxp∈Λ(k) ||p||1. The error indicator (40) relates the highest-order partial variances to the total variance in an
element dk, see Figure 2A. Thus, if the estimation on the local variance 𝜎2

k is sufficiently accurate, the coefficients in the
nominator will be small, thus resulting in a small error indicator value as well.

In the case of an anisotropic basis, for example, obtained with a dimension-adaptive algorithm, the only restriction
on the local multi-index set Λ(k) is that it is downward closed. Then, the error indicator (40) might not be informative
regarding the accuracy of the local polynomial approximation, for example, in the case of multi-index sets with a single
dominant dimension. Considering the arbitrary shape of the basis, the employed coefficients may originate from differ-
ent polynomial levels, unlike in (40). It could therefore be beneficial to employ only admissible coefficients. However,
this can lead to cases where only a relatively small number of coefficients are employed, which might not represent the
actual estimation quality of the local variance. For instance, consider an objective function for which f (x) = f (−x) and an
index set as pictured in Figure 2B. In this case, one dimension is dominant and the objective function demands for even
polynomials. Hence, considering only the admissible indices, the error indicator might be misleading and not robust.

To solve this issue, a fixed number of coefficients is employed. LetΛ(k) denote the anisotropic multi-index set, including
the admissible multi-indices. We then seek for the TD Pk such that

max
Pk

{
#Λ(k) ≥ #Λ(k)TD =

(N + Pk
N

)}
, (41)

that is, we search for a TD basis with cardinality similar to the anisotropic basis. Then, the error indicator used in
the dimension-adaptive case employs the last mk added multi-indices (including the admissible indices), where mk is
determined with

mk =
(N + Pk

N

)
−

(N + Pk − 1
N

)
. (42)

Note that with Equation (42) we employ as many coefficients as in the case of a TD basis. Assuming that #Λ(k) = Wk

and defining a nested sequence
{
Λ(k)wk

}Wk

wk=1
where Λ(k)wk

is downward closed and #Λ(k)wk
= wk, the last mk multi-indices are

included in the set Λ(k) ⧵ Λ(k)Wk−mk
. Then, the modified error indicator is given by

𝜎

−2
k

∑

p∈Λ(k)⧵Λ(k)Wk−mk

(
c(k)p

)2
. (43)

Due to the fact that the most recently added partial variances are employed, a similar behavior to the error indicator (40)
is to be expected. Note that the error-indicator (43) is purely heuristic, however, it has proven itself a viable choice in
many numerical examples, see Section 5.

4.2.3 Mark

Given the local error indicators 𝜂k, k = 1, … ,K, an element dk is marked for either h- or p-refinement if

𝜂

𝛼

k𝜚k ≥ 𝜃1, 0 < 𝛼 < 1, (44)
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where 𝜃1, also referred to as the marking parameter, and 𝛼 are user-defined constants. Regarding the choice of the values
of these constants, an extensive discussion can be found in the literature.15 For all numerical experiments presented in
this work, the constant value 𝛼 = 0.5 is used if a variance-based error indicator is employed and 𝛼 = 1 if an adjoint-based
error indicator is used. The constant 𝜃1 is varied according to the problem under investigation. A discussion on the choice
of 𝜃1 is found in Section 5.2.1. Note that marking strategies other than the criterion stated in (44) can be adopted as well,
for example, the fixed energy fraction or the maximum strategy criteria suggested in the literature on hp-adaptive FEM.68,70

In contrast to criterion (44), these strategies mark elements if the local error indicator 𝜂k is large compared to the error
indicators of all remaining elements. However, our numerical experiments showed that the proposed marking strategy
delivers slightly better results. The algorithm terminates either when all local error indicators 𝜂k are small and/or the
elements are small. Note that the local error contribution of an element to the total L2 error scales with the normaliza-
tion factor 𝜚k, which is strongly related to the element size.15 Consequently, h-refinement around a discontinuity will
eventually terminate if the elements are small enough, since the contribution to the overall error is negligible.

4.2.4 Refine

Once the marking procedure is complete, a decision for either h- or p-refinement for each element dk is made. To that
end, the convergence order of the local PCE is estimated.

In deterministic finite element (FE)-analysis, p-refinement is carried out if the solution is locally analytic on the ele-
ment. In fact, the smoothness properties can be estimated from a Legendre expansion of the solution.74 In 1D, a linear
model is fitted to the logarithmic values of the Legendre series and the slope m̂ is extracted. Then, p-refinement is car-
ried out if ̂𝜃 = e−m̂ is above a certain threshold, corresponding to a sufficiently large Bernstein ellipse, hence, region of
analyticity.

A similar approach can be applied to a (local) PCE approximation

g̃(k)(x(k)) =
∑

p∈Λ(k)
c(k)p Ψ

(k)
p (x(k)).

It has been shown75 that for analytic functions the PCE coefficients satisfy

|c(k)p | ≤ Ce−
∑N

n=1cnpn
. (45)

In fact, the result was proven for the Legendre basis, but it holds for any PCE basis for which the associated density
satisfies maxx∈Ξ |𝜋X(x)| ≤ C. The factors cn depend on the size of the analytic extension of [an, bn] into the complex plane;
the larger this extension, the larger the value of cn.32,75,76 In elements where the objective function g(x) is smooth, a fast
convergence, that is, a large constant c = minn cn is expected, see Figure 3A. Contrarily, in elements where the objective
function has less regularity, a small constant c is expected, see Figure 3B. Hence, an estimation on the convergence rate
of the PCE coefficients can serve as an indicator for p-, respectively h-refinement. Hence, we define

̂

𝜃 = e−c
, (46)

as the convergence indicator. To estimate ̂

𝜃, a linear model with slope m̂ is fitted to the decaying PCE coefficients. The
convergence indicator ̂𝜃 is then estimated by solving

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 −1
1 −2
⋮ ⋮

1 −Pk

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(
b
m̂

)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log
(

max
p∈Λ(k)∶||p||1=1

|cp|
)

log
(

max
p∈Λ(k)∶||p||1=2

|cp|
)

⋮

log
(

max
p∈Λ(k)∶||p||1=Pk

|cp|
)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (47)
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(A) (B)

F I G U R E 3 Estimating the decay of the PCE coefficients, (A) for a smooth objective function (B), for a function with reduced regularity.
The blue markers show the coefficients employed to identify the rate of convergence, whereas the black dots show the remaining PCE
coefficients.

in the least-squares sense and determined with ̂

𝜃 = e−m̂. The decision for p- or h-refinement is then made as follows:

p-refinement for ̂

𝜃 ≤ 𝜃2,

h-refinement for ̂

𝜃 > 𝜃2,
(48)

where 𝜃2 is a user-defined parameter. A discussion on the choice of 𝜃2 is available in Section 5.2.1.

p-refinement
In the case of p-refinement, the existing polynomial basis in an element dk is extended with additional terms. If a TD
basis is employed, the total degree Pk is increased by one order and the Leja nodes corresponding to the newly added
multi-indices are added to the interpolation grid.

In the case of an anisotropic basis constructed with a dimension-adaptive algorithm, special treatment is neces-
sary. The dimension-adaptive algorithm works sequentially, that is, one node is added to the basis representation in
each iteration. Hence, the entire refinement cycle, see Section 4.2, could be estimated after each iteration. However, the
improvement of the basis representation by adding one node is expected to be only minor and is in contrast to the com-
putational demand of the entire refinement cycle, for example, computing the PCE coefficients. To avoid unnecessary
computational costs, a larger number of nodes is added before we carry on with the next step in the refinement cycle.
Following the definition of the corresponding error indicator (43), we estimate again the TD Pk with the given cardinality
#Λ. Then, mk =

(
N+Pk+1

N

)
−

(
N+Pk

N

)
basis terms are added, that is, the same number of basis terms as in the TD case. Note

that the number of basis terms might be slightly larger than mk, since the algorithm explores all admissible multi-indices
if a multi-index is added to the current set Λ(k).

In both cases, the already existing Leja grid points along with the corresponding function evaluations are re-used,
hence, the original model must be evaluated only for the newly added Leja nodes.

h-refinement
In the case of h-refinement, for each parameter X (k)

n , n = 1, … ,N, in the element dk, we estimate the main-effect Sobol
sensitivity index77-79 using the local PCE, such that

̃S(k),Mn = 1
𝜎

2
k

∑

p∈Λ(k),Mn

(
c(k)p

)2
, n = 1, … ,N, (49)

where

Λ(k),Mn =
{

p ∈ Λ(k) ∶ pn ≠ 0 and pm = 0, m ≠ n
}
. (50)
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The parameter that corresponds to the largest sensitivity index is then selected, that is, the parameter X
𝜈

with

𝜈 = arg max
n∈{1,… ,N}

̃S(k),Mn , (51)

and the corresponding univariate element d(k)
𝜈

=
[

a(k)
𝜈

, b(k)
𝜈

)
is split into a “left” and a “right” element, d(k),L

𝜈

=
[

a(k)
𝜈

, c(k)
𝜈

)

and d(k),R
𝜈

=
[

c(k)
𝜈

, b(k)
𝜈

)
, respectively, where the value of c(k)

𝜈

is chosen such that the two new elements have an equal
probability mass, that is,

c(k)
𝜈

∫

a(k)
𝜈

𝜋X
𝜈

(
x(k)
𝜈

)
𝜚k dx(k)

𝜈

= 1
2
. (52)

Note that if b(k)
𝜈

= b
𝜈

, then d(k)
𝜈

=
[

a(k)
𝜈

, b(k)
𝜈

]
. Accordingly, the univariate interpolation grid (k)

𝜈,j
𝜈

=
{

x(k)
𝜈,0, x

(k)
𝜈,1, … , x(k)

𝜈,j
𝜈

}
that

exists in the univariate element d(k)
𝜈

is split into a left grid  (k),L
𝜈,j

𝜈L
and a right grid  (k),R

𝜈,j
𝜈R

, such that  (k)
𝜈,j

𝜈

=  (k),L
𝜈,j

𝜈L
∪  (k),R

𝜈,j
𝜈R

and  (k),L
𝜈,j

𝜈L
∩  (k),R

𝜈,j
𝜈R
= ∅. For n ≠ 𝜈, the univariate elements d(k)n and the corresponding univariate interpolation grids  (k)n,jn

remain unaffected. Therefore, the element dk is also split into two new elements

dL
k = d(k)1 × d(k)2 × · · · d(k),L

𝜈

× · · · × d(k)N , (53a)

dR
k = d(k)1 × d(k)2 × · · · d(k),R

𝜈

× · · · × d(k)N . (53b)

We now shift our attention to d(k)
𝜈

= d(k),L
𝜈

∪ d(k),R
𝜈

, since it is the only univariate element affected by the refinement of the
element dk. It can easily be observed that the interpolation grids  (k),L

𝜈,j
𝜈,L

and  (k),R
𝜈,j

𝜈,R
that result from splitting the original

element, do not coincide with the Leja sequences that would be constructed in the elements d(k),L
𝜈

and d(k),R
𝜈

, respectively,
using the Leja sequence definition in (10) or (11). Therefore, the attractive properties of Leja sequences are mostly lost,
especially their suitability as interpolation grids due to the subexponential growth of the Lebesgue constant.49 Neverthe-
less, interpolation stability can be recovered by using the existing points to initialize a Leja sequence and then add new
Leja points computed as in the definitions (10) and (11), a procedure called stabilization.43 Additionally, the stabilized
interpolation grid is sorted according to the Leja ordering, which is necessary to achieve improved Lebesgue constant
values.43,46

The importance of sorting can also be understood in the case of a uniform distribution, where (32) is recast as

x(k)n,jn
= arg max

x∈d(k)n

jn−1∏

i=0

|||x − x(k)n,i
||| = arg max

x∈d(k)n

| det V(xn,0, … , xn,jn−1, x; h0
n, … , hjn

n )|, (54)

that is, as determinant maximization over the Vandermonde-like matrix with points (xn,0, … , xn,jn−1, x) and polyno-
mials {h0

n, … , hjn
n }. The connection of this greedy maximization procedure to D-optimal experimental design has

already been observed.28 Moreover, it has been shown that the Leja-sorting procedure is equivalent to a partial pivot-
ing LU-decomposition applied to the Vandermonde-like matrix, which can also be used to efficiently compute the Leja
sequence.29

To the knowledge of the authors, there is no theoretical guarantee regarding the additional Leja nodes that are nec-
essary to achieve a stable Lebesgue constant, respectively, to reduce the interpolation error to a certain level. Numerical
tests in a prior work,43 as well as our own numerical results, indicate that doubling the number of existing nodes leads
to a significant improvement in both Lebesgue constant and interpolation accuracy. Note that for symmetric parameter
distributions, Leja points are almost symmetrically distributed. Therefore, after splitting, approximately half of the Leja
points are available in each new element, see Figure 4A. Hence, to obtain a TD basis of the same polynomial degree, the
same number of additional stabilization points must be computed. Considering that, we ensure that the number of Leja
nodes is doubled for both TD and dimension-adaptive bases. Now, the multivariate interpolation grid is constructed with
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(A) (B)

F I G U R E 4 (A) Domain splitting and stabilization of the Leja points. The black points have been calculated for a uniform RV
X ∼  [−1, 1]. The green points show the readily available interpolation nodes within [0, 1] after splitting the initial image space [−1, 1],
whereas the orange points are the new points which are calculated for the uniform RV X ∼  [0, 1] by considering the available (green)
points as initialization for the Leja sequence. For comparison, the Leja sequence calculated for X ∼  [0, 1] without considering the readily
available nodes are shown in blue. (B) Lebesgue constant for different interpolation grids.

the desired basis representation and reads


(k),L
Λ(k)

=
⋃

j∈Λ(k)

(

(k)
1,j1
×  (k)2,j2

× · · · ×  (k),L
𝜈,j

𝜈L
× · · · ×  (k)N,jN

)
, (55a)


(k),R
Λ(k)

=
⋃

j∈Λ(k)

(

(k)
1,j1
×  (k)2,j2

× · · · ×  (k),R
𝜈,j

𝜈R
× · · · ×  (k)N,jN

)
. (55b)

Considering the case of a TD basis, all nodes are re-used by construction if we employ the multivariate grid  (k)
Λ(k)

for interpolation. However, this is not true if the univariate grid  (k)
𝜈,j

𝜈

is sorted. Then, the grids  (k)
Λ(k)

∩  (k),sorted
Λ(k)

≠ ∅, but

(k)
Λ(k)

⊄ 
(k),sorted
Λ(k)

. Depending on the sorting, several nodes and function evaluations may be lost. However, the numerical
results on various examples showed that a significant amount of nodes is re-used.

The dimension-adaptive basis is once more a special case. After h-refinement, the new elements most likely fea-
ture a different anisotropic behavior than the original element. Therefore, the multi-index sets in the new elements are
re-initialized with the multi-index setΛ(k) = {0}. The dimension-adaptive algorithm then utilizes the old univariate grids
and builds the multivariate grid on demand. The grid defined in (55) then acts as a depot, where Leja nodes are picked if
the adaptive Leja algorithm demands for the corresponding nodes. The univariate grids are only extended if all already
existing nodes have been utilized. The different anisotropy may lead to the case where a new dimension is now dominant,
which then leads to less re-use of Leja nodes. However, the dimension-adaptive basis exploits the anisotropic behavior in
the new elements and is expected to be beneficial even if not all nodes are preserved.

The stabilization procedure and its relation to the Lebesgue constant is illustrated in Figure 4. We consider an initial
domain [−1, 1] with a corresponding Leja sequence consisting of eleven points, which is split into [−1, 0) and [0, 1], and
focus on the latter subdomain. Figure 4A shows the initial Leja sequence (black nodes) and the six points that are re-used
within subdomain [0, 1] (green nodes). The re-used points are used to initialize a Leja sequence and compute new points
(orange nodes) until the interpolation grid is stabilized. For comparison, the Leja points calculated in the interval [0, 1]
without prior initialization are shown (blue nodes), where it is obvious that they do not coincide with the points of the
stabilized Leja grid. Figure 4B shows the Lebesgue constant for an increasing number of interpolation points for the
stabilized grid in [0, 1], where the initial six points (denoted with green) are obtained from the readily available Leja
sequence within [−1, 1] prior to splitting. For comparison, the Lebesgue constant for Chebyshev points and for Leja points
without prior initialization within [0, 1] are shown. It can easily be observed that adding new nodes according to the Leja
sequence definition results in the reduction and stabilization of the Lebesgue constant. It is also clear that sorting the
stabilized grid according to the Leja ordering is crucial for interpolation stability.
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5 NUMERICAL EXPERIMENTS

In the following, the performance and approximation capabilities of the proposed hp-adaptive stochastic collocation
method is tested on several test cases. A rigorous discussion on the h-convergence of the multi-element collocation
method, in particular with isotropic and equidistant grids, is available in the literature.16 Since the main advantage of using
Leja sequences is the ability to re-use readily available Leja points and thus significantly reduce the computational cost
due to the model evaluations on the collocation points, we focus on the computational gains provided by the h-adaptive
and hp-adaptive refinement strategies described in Section 4. In particular, we first consider fixed polynomial bases, thus
disregarding p-adaptivity, and compare the h-adaptive multi-element stochastic approach developed in this work against
other h-adaptive methods found in the literature.10,15,16 Unless stated otherwise, a discrete root mean square (RMS) error
is used to evaluate the convergence behavior of the tested methods. The error is given by

𝜖RMS =
√

EQ
[
(g̃(x) − g(x))2

]
=

√√√√ 1
Q

Q∑

q=1

(
g̃(xq) − g(xq)

)2
, (56)

which is computed using a validation sample {xq}Q
q=1 drawn randomly from the joint input PDF.

5.1 h-refinement test cases

5.1.1 Benchmark problems

In this test case, we discuss the cost savings that are obtained when re-using the Leja points in the context of h-refinement.
Note that, due to the nestedness of the Leja nodes, all Leja nodes are re-used when p-refinement is performed. We consider
the continuous and discontinuous Genz functions80

g1(x) = exp

(

−
N∑

n=1
10 ⋅ 2−n |xn − 0.5|

)

, (57a)

g2(x) =
⎧
⎪
⎨
⎪
⎩

0, if x1 > 0.5 or x2 > 0.5,
exp

(∑N
n=110 ⋅ 2−nxn

)
, otherwise,

(57b)

where the coefficients are chosen such that an anisotropic behavior in the function response is achieved. In the follow-
ing, xn denotes realizations of the RVs Xn ∼  [0, 1]. The h-convergence is examined for varying values of the marking
parameter 𝜃1. Additionally, a comparison against the same methodology, that is, also using h-adaptivity only, but based
on Gauss–Legendre nodes is performed. In the latter case, the nodes cannot be re-used after h-refinement. A further com-
parison is performed against spatially adaptive sparse grids,10 where the latter is based on the implementation provided
by the SG++ toolbox*. All results have been computed with a validation set of Q = 106.

First, we consider only the discontinuous Genz function g2(x) for N = 2. For Leja and Gauss–Legendre nodes, a TD
polynomial basis with maximum polynomial degrees Pk = 4 in each element is used. Figure 5A shows the RMS error (56)
in dependence to the number of function calls after the h-refinement procedure has converged for a given value of the
marking parameter 𝜃1, with 𝜃1 ∈

{
10−1

, 10−3
, 10−5

, 10−6
, 10−7}. The amount of re-used function evaluations is shown next

to the marks for the case where nodes are re-used and sorted. As can be observed, the Leja based stochastic collocation
method outperforms the Gauss–Legendre based one, irrespective of whether the Leja nodes are re-used, re-used but not
sorted, or not re-used. By re-using the Leja nodes, an additional gain in performance is obtained. For the given example,
not sorting the Leja nodes leads to a negligible improvement in the RMS error. As mentioned in Section 4.2.4, 100% of the
Leja nodes are re-used after element splitting if the nodes are not sorted. However, without sorting the nodes, it is unclear
if the Lebesgue constant remains stable, see Figure 4B. Therefore, for the remaining numerical examples, the Leja nodes
will always be sorted.

*https://sgpp.sparsegrids.org/. The adaptivity of the method is controlled through the surpluses of the hierarchical interpolation polynomials.

https://sgpp.sparsegrids.org/
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(A) (B)

F I G U R E 5 (A) RMS error versus model evaluations (M) for the multi-element stochastic collocation method based on Leja points with
and without information re-use, as well as with Gauss–Legendre nodes. The percentage of re-used Leja nodes is shown next to the mark. (B)
Leja interpolation grid after the convergence of the h-refinement procedure for 𝜃1 = 10−4. The gray dots show the nodes that have been newly
computed in the last iteration of the algorithm. The black dots show the nodes that have been re-used.

All employed approaches reach an asymptotic h-convergence rate of (M−3) once the discontinuity of the function
has been isolated. In the case of sorted Leja nodes, a re-use rate of approximately 90% is obtained. Figure 5B shows the
interpolation grid and the corresponding Leja nodes after the h-adaptive algorithm has converged for 𝜃1 = 10−4. The gray
dots show the new nodes that have been computed latest by the algorithm, whereas the black dots show the nodes that
have been re-used. It is clearly visible that the adaptive h-refinement results in element splitting only in the regions of
the parameter domain where the objective function is not zero, thus verifying that the h-refinement strategy and the
corresponding refinement criteria described in Section 4.2 perform as expected. Note that, in this case, the discontinuity
of the objective function coincides with the parameter axes. Therefore, the elements can resolve the discontinuity exactly.
If this is not the case, a grid with dense elements around the discontinuity will appear and the convergence rate of the
RMS error is hindered.16 The algorithm stops once the criterion (51) is not met. This happens if the error indicator (40)
and/or the elements are sufficiently small, equivalently, 𝜚k is sufficiently small.

In the following we discuss the remaining results for both test functions (57) for N = 2 and N = 5. Figure 6 shows the
RMS error over function evaluations calculated with the h-adaptive algorithm based on Leja and Gauss–Legendre nodes.
The TD basis is constructed for a maximum polynomial degree Pk = 4. Furthermore, results computed with the SG++
toolbox for both test functions are shown. Irrespective of the utilized nodes, the h-adaptive algorithm shows a similar
convergence behavior for all considered functions. The results show clearly that re-using the Leja nodes leads to a gain in
the approximation accuracy. In the continuous case, the SG++ is superior for N = 5, but inferior for N = 2. This can be
attributed to the underlying tensor product structure of the proposed multi-element approach, which is not inherent in the
spatially adaptive sparse-grids approach. Contrarily, the convergence of the SG++method is hindered when considering
the discontinuous example. This behavior is consistent with previous results10 and is related to the regularity conditions
on the objective function that are here violated.

5.2 hp-refinement test cases

5.2.1 Introductory example

To showcase the computational benefits obtained due to the hp-adaptivity of the proposed method, an academic test case
featuring a one-dimensional function is considered first. In particular, the analytical function

g(x) = −x + 0.1 sin(30x) + e−(50(x−0.65))2
, (58)

is employed, which has previously been used to validate the SSE method.81 The function is depicted in Figure 7A, where
the values of the parameter x refer to realizations of the uniform RV X ∼  [0, 1]. The observed sharp spike is the main
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(A) (B)

(C) (D)

F I G U R E 6 RMS error over model evaluations M. The results have been computed with adaptive h-refinement. Left column:
Continuous Genz function g1(x), right column: Discontinuous Genz function g2(x), top row: N = 2, bottom row: N = 5.

reason why a rather slow convergence rate is to be expected if a global approximation is applied, for example, a global
interpolation on Leja or Chebyshev nodes. The hp-adaptive Leja based multi-element collocation method should signif-
icantly improve the convergence rate by dividing the domain into smooth sub-domains (h-refinement), in which local
polynomial approximations with increasing degree are developed (p-refinement), as presented in Section 4.

Following the SSE paper,81 the accuracy of a surrogate model g̃(x) ≈ g(x) is evaluated using the relative root mean
squared error

𝜖RMS,rel =

√√√√E
[
(g(x) − g̃(x))2

]

V
[
g(x)

] , (59)

which is estimated using a random sample with 105 points. The results for different surrogate models are shown in
Figure 7A. The results for the hp-adaptive Leja based multi-element collocation method are obtained with 𝜃1 = 10−12 and
𝜃2 = 0.8. Using h-refinement alone and a constant polynomial degree Pk = 3 leads to a convergence rate of (M−4). For
comparison, the results obtained with p-refined global interpolations on Leja and Chebyshev nodes, as well as with the
SSE method81 are presented.

All proposed methods show a converging behavior, however, it is clearly evident that the hp-adaptive multi-element
collocation method outperforms all other surrogate modeling options. Based on a least-squares estimate on the decay of
the error for the hp-adaptive approach, a geometric convergence rate of

(
e−0.32M)

is obtained.82 Note that the hp-adaptive
Leja based multi-element stochastic collocation method and the SSE method tackle different types of problems. The
method proposed in this work handles problems with low to moderate dimensions, whereas the SSE method is intended
for high dimensional problems. Therefore, the comparison in Figure 7A is not to be understood in a competing manner.

Next we analyze the impact of the parameters 𝜃1 and 𝜃2 on the hp-refinement procedure. Figure 8 shows the domain
decomposition and the polynomial degree of each element for different values of 𝜃1 and 𝜃2. The left column figures
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(A) (B)

F I G U R E 7 (A) One-dimensional analytical function. (B) Relative mean square error 𝜂 in dependence of the number of model
evaluations for SSE, global Chebyshev/Leja, and hp-adaptive Leja surrogates.

correspond to 𝜃1 = 10−2, while the right column figures to 𝜃1 = 10−4. Accordingly, the top row figures correspond to
𝜃2 = 0.2, in which case h-refinement is preferred over p-refinement. Contrarily, p-refinement is prioritized in the bot-
tom row figures, which correspond to 𝜃2 = 0.8. An initial polynomial degree of Pk = 2 has been used for all four cases.
All four choices for 𝜃1 and 𝜃2 generate interpolation grids that isolate the spike. As would be expected, more elements
are generated for 𝜃2 = 0.2, in particular in the region where the spike is observed. Further decreasing 𝜃1 leads to a more
finely resolved spike area, where the polynomial degrees in each element remain at moderate values. As would also be
expected, larger elements with higher polynomial degrees are generated for 𝜃2 = 0.8. If 𝜃1 is further decreased in this case,
p-refinement with a focus on the spike region is carried out.

Remark: In the following we discuss the choice of the constants 𝜃1 and 𝜃2. The marking parameter 𝜃1 determines the
accuracy of the solution. However, this accuracy is estimated either with variance-based error indicators or, if available,
with the adjoint-based error indicator (38), see Section 4.2.2. Parameter 𝜃1 is chosen according to the expected behavior
of the error indicator. Numerical tests have shown that the variance-based error indicator is often too optimistic, that is,
if a desired accuracy needs to be reached, a smaller value for 𝜃1 is necessary. In case of a fixed computational budget, 𝜃1
can be decreased sequentially until the budget is reached. The constant 𝜃2 is chosen according to the objective function. If
we expect the function to have areas that are not easily resolvable, h-refinement is preferred and a smaller constant 𝜃2 is
chosen. Contrarily, if the function has areas that can easily be resolved or the function is analytic but has sharp transitions,
see for example the function (58), a larger 𝜃2 should be chosen. In all considered numerical examples, the value of 𝜃2 is
chosen such that 𝜃2 ∈ [0, 1].

5.2.2 Benchmark problems

The full capabilities of the proposed method, that is, hp-adaptive refinement with different basis representations, is now
discussed for the case of the Genz test functions (57). To assess the performance of the proposed method, we compare it
against a spatially adaptive sparse grid combination technique, in the following referred to as sparseSpACE.11 Numerical
tests are carried out for N = 2 and N = 8 parameter dimensions. In all cases, the error (56) is determined with a validation
set of size Q = 106.

Figure 9 shows the RMS error for both test functions for the cases N = 2 and N = 8. First, considering the case of
N = 2 dimensions, the hp-adaptive approach with a TD basis is found to be superior against all other approaches for both
test functions. This result is not surprising, due to the fact that the objective functions are almost isotropic for N = 2. The
results obtained with the sparseSpACE toolbox show only a moderate convergence behavior. Next, we consider the case
of N = 8 dimensions for the continuous Genz function, see Figure 9C. We observe that all methods show a converging
behavior. In this higher dimensional case, the dimension-adaptive basis performs significantly better than the TD basis.
This can be attributed to the anisotropic objective function. Nevertheless, the tensor-product structure of the proposed
multi-element approach hinders its ability to compete with sparseSpACE in this test case, similar to the results obtained
when considering h-refinement only, see Section 5.1.1. However, looking at the results obtained for the discontinuous
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(A) (B)

(C) (D)

F I G U R E 8 Adaptively generated interpolation grids and corresponding polynomial degrees for different values of 𝜃1 and 𝜃2.
(A) 𝜃1 = 10−2, 𝜃2 = 0.2. (B) 𝜃1 = 10−4, 𝜃2 = 0.2. (C) 𝜃1 = 10−2, 𝜃2 = 0.8. (D) 𝜃1 = 10−4, 𝜃2 = 0.8.

Genz function, see Figure 9D, the dimension-adaptive basis performs significantly better. In particular, the TD basis and
the dimension-adaptive basis show a similar convergence behavior, whereby the dimension-adaptive basis outperforms
the TD basis by two orders of magnitude. In this case, the sparseSpACE toolbox does not converge, which is consistent
with previously reported results.11

For the discontinuous Genz function (57b), two h-refinement steps are necessary to resolve the discontinuity. All pro-
posed hp-approaches achieve this minimum domain splitting for a certain parameter choice of 𝜃2. Under this parameter
configuration, the hp-adaptive algorithm achieves the best results. The minimum number of h-refinements leads to large
elements within which only p-refinement is carried out afterwards. Then, the basis representation in the elements is of
even more importance for the computational costs, respectively the accuracy of the approximation.

The relative amount of re-used Leja nodes in case of h-refinement can be found in Table 1. Note that the discontinu-
ous Genz function with N = 8 dimensions results in comparatively low re-use percentages, particularly for the TD and
dimension-adaptives bases. However, in those cases, the hp-adaptive algorithm performed only two h-refinements and
thus the overall costs are dominated by the following p-refinements.

5.2.3 Posterior estimation

As stressed in Section 1, surrogate models for the likelihood function, respectively for the posterior distribution of inverse
problems, can be an alternative to expensive Markov chain Monte Carlo analyses. To showcase the benefits of using the
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F I G U R E 9 RMS error over model evaluations M. The results have been computed with adaptive hp-refinement. Left column:
Continuous Genz function g1(x), right column: Discontinuous Genz function g2(x), top row: N = 2, bottom row: N = 8.

T A B L E 1 Relative amount of re-used Leja nodes over the amount of available Leja nodes.

Continuous Genz Discontinuous Genz

Basis 𝜽2 N = 2 N = 8 N = 2 N = 8

TD 0.4 93% 93% 89% 38%

0.6 87% 88% 83% 38%

Dimension-adaptive 0.4 94% 69% 100% 78%

0.6 66% 86% 58% 50%

Note: Only savings during h-refinement are counted. The results were obtained upon convergence of the algorithm.

method proposed in this work, a statistical model with additive noise is considered,3 which reads

(x) + 𝜺 = b, (60)

where b ∈ RD denotes the observations or measurements, x ∈ RN the unknown model parameters,  ∶ RN → RD the
forward model, and 𝜺 ∈ RD the Gaussian noise, such that 𝜺 ∼ (0, 𝜎2I), with I ∈ RD×D being the identity matrix. In the
simplest case, the inverse problem (60) represents a linear regression problem, where  is the discretized model opera-
tor and x the vector of regression coefficients, accordingly, it holds that (x) = x. In the same context, deconvolution
problems pose significantly greater challenges.
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(A) (B) (C)

F I G U R E 10 (A) Posterior over the parameters x1 and x2. (B, C) Adaptively generated interpolation grids and corresponding
polynomial degrees for 𝜃1 = 10−3 and different values of 𝜃2. (B) 𝜃2 = 0.2. (C) 𝜃2 = 0.8.

The unknown parameter vector x can be computed by means of maximum likelihood estimation (MLE), such that

x = arg max
x

L(x|b) = argmax
x

1
(2𝜋)D∕2

𝜎

D exp
(
− ||(x) − b||2

2𝜎2

)
, (61)

where L(x|b) denotes the likelihood function. However, inverse problems are often ill-posed, for example, due to the
amplification of the measurement noise, thus resulting in very challenging parameter estimation tasks. A possible remedy
is to regularize problem (60) by employing, for example, Tikhonov regularization or iterative regularization,3,83 to name
but a few options. Another measure is to utilize Bayesian inference.83 Therein, the parameters x are modeled as RVs
and a prior distribution is assumed for them. Given the observations b, information about the noise, and our prior belief
regarding the parameter vector x, Bayes’ theorem yields

𝜋(x|b) ∝ L(x|b)p(x), (62)

where p(x) denotes the prior distribution and 𝜋(x|b) the posterior distribution. The posterior distribution (62) is now
regularized by the prior distribution p(x). The parameter vector can be estimated by maximizing (62), which leads to the
so-called maximum a posteriori (MAP) estimation.

Using the Bayesian approach, additional statistical quantities that characterize the posterior distribution, for example,
its mean, variance, or higher-order moments, can be computed. In that case, the evidence, also referred to as the marginal
likelihood, that is, the normalization of (62) over the parameter vector x, must be computed. The computation of the
evidence can be challenging, as the likelihood function and thus also the posterior can be highly concentrated, see
Figure 10A. The proposed multi-element collocation method can then be employed to obtain a surrogate model of (62),
such that the evidence and the statistical moments can be computed accurately with a comparatively lower computational
cost.

Two-dimensional regression problem
We start with a two-dimensional regression test case where we search for the model parameters x1 and x2 such that

𝜉 → G(𝜉, x1, x2) = x2 exp(x1𝜉) − 2, (63)

best fits experimental data. A measurement set with 5 noisy observations is assumed to be available, that is, {𝜉i, bi}5
i=1,

where 𝜉i are equidistantly sampled in [−1, 1] and hence (x) = (G(𝜉1, x1, x2), … ,G(𝜉5, x1, x2))⊤ and b = (b1, … , b5)⊤,
respectively. Artificial observations are then generated as bi = G

(
𝜉i, x⋆1 , x

⋆

2
)
+ 𝜀, where 𝜀 ∼ (0, 𝜎2)with 𝜎2 = 0.01. Note

that x⋆1 and x⋆2 denote the true but currently unknown model parameters. We assume the parameters to follow a truncated
normal distribution, denoted as   (𝜇, 𝜎2

,𝓁,u), where 𝜇 and 𝜎2 are the mean and variance of a Gaussian distribution


(
𝜇, 𝜎

2) which is truncated within the interval [𝓁,u]. The parameter priors are given as x1 ∼   (0.8, 0.04, 0.2, 1.4),
x2 ∼   (1.5, 0.04, 0.9, 2.1).
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F I G U R E 11 Convergence of the RMS error in dependence to model evaluations. The results have been obtained using TD polynomial
bases. (A) Two-dimensional regression problem. (B) Four-dimensional deconvolution problem.

T A B L E 2 Distribution of the random variables for the 4D Bayesian example.

Parameter Distribution

x1   (0.88, 0.16,−0.32, 2.08)

x2   (0.1, 0.04,−0.5, 0.7)

x3   (0.3, 0.01, 0, 0.6)

x4   (0.29, 0.01,−0.01, 0.59)

The posterior distribution is depicted in Figure 10A, which shows the strongly concentrated posterior density.
Figure 11A shows the RMS error versus the number of model evaluations using stochastic collocation on Leja interpo-
lation grids based on h-refinement, global interpolation with p-refinement, and hp-refinement with a varying adaptivity
parameter 𝜃2. All local polynomial approximations are based on TD bases. Except for p-refinement, all marks show
the results after convergence for a specific marking parameter 𝜃1. The results clearly show that surrogates based on
h- and hp-refinement are superior to the global collocation approach. For a moderate number of model evaluations,
a similar performance is observed using either h- or hp-refinement. However, once the parameter domain has been suffi-
ciently decomposed, in which case the hp-adaptive algorithm prefers p- over h-refinement, hp-adaptivity yields significant
computational gains. Additionally, at this point, a switch from an algebraic to a geometric convergence rate is observed.

Figure 10B,C show the domain decomposition as well as the employed polynomial degrees Pk of the local TD bases,
for 𝜃2 = 0.2 and 𝜃2 = 0.8, respectively. The results correspond to the converged algorithm for a marking parameter
𝜃1 = 10−3. Both figures clearly illustrate that the hp-adaptive approach identifies the highly concentrated posterior density.
As expected, in the case of 𝜃2 = 0.2, more elements are spent to isolate the posterior density, while the local polyno-
mial degrees Pk have low values. Contrarily, choosing 𝜃2 = 0.8 results in fewer elements with significantly higher local
polynomial degrees.

Four-dimensional deconvolution problem
We now consider a posterior estimation problem featuring four parameters. We again solve the inverse problem (60) for
the parameter vector x and given observations b, however, the underlying problem is now a convolution problem of the
form

b(t) =
∫

∞

−∞
K
(

t − t′
)

x
(

t′
)

dt′, −∞ ≤ t ≤∞, (64)

where b(t) is the output function, K(t) is the weighting function or kernel, and x(t) the input function. For example, in the
field of acoustics, b(t) is the system response, K(t) the fundamental solution of the wave equation, and x(t) the sources.
The example can be found in the book of Bardsley,3 where a detailed description of the functions and parameters is given.
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F I G U R E 12 Snapshots of the quantity of interest for the Helmholtz problem for N = 4.

F I G U R E 13 RMS error over model evaluations M for the Helmholtz problem with N = 4.

A Matlab implementation is also available.84 The convolution problem is discretized with 4 grid points, which leads to
the discrete system (60). At each of the grid points, the unknown input values x1, … , x4, are to be estimated based on
the available data b. Truncated normal distributions are considered as priors for the unknown input values, see Table 2.
Furthermore, the measurements b are polluted by additive Gaussian noise with 𝜎 = 0.1. The other parameters remain as
in the book of Bardsley.3

Figure 11B shows the convergence of the RMS error over the number of model evaluations M. Similar to the
two-dimensional case, all local polynomial approximations employ TD bases. As previously observed, once the con-
centrated posterior density has been sufficiently resolved by the algorithm, the collocation based on hp-refinement
outperforms h-refinement alone. Moreover, it must be noted that, in this test case, the computational cost for construct-
ing the Leja grid in the global p-refinement case, cannot be regarded to be negligible anymore due to the increasing costs
of resolving the optimization problem (11). Therefore, the hp-adaptive stochastic collocation is to be preferred overall.
Remark: In both test cases presented in this section, TD bases have been employed for the polynomial approximations.
The reason for this choice is that the error indicator (43) employed for the dimension-adaptive basis expansion fails to
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identify the elements that need further h- or p-refinement. This issue can be attributed to the high concentration of the
posterior density, in combination with the greedy algorithm of the dimension-adaptive basis approach. Nevertheless,
other sparse bases such as (non-adaptive) Smolyak sparse grids16,85 can be used instead. In that case, the benefits of using
Leja nodes, in particular the ability to re-use existing nodes and corresponding model evaluations, remain valid.

5.2.4 Helmholtz problem

To illustrate the method with a PDE based problem, we consider the Helmholtz equation introduced in Section 2.3. For
our numerical experiments on the Helmholtz equation we choose N = 4 terms for the log-Karhunen–Loève expansion
(6). One-dimensional snapshots of the QoI are depicted in Figure 12. We assume that input parameters are distributed
as Xn ∼ (2, 2,−1, 1), n = 1, … ,N, where (𝛼, 𝛽, a, b) denotes the Beta distribution with shape parameters 𝛼, 𝛽 and
image space [a, b]. The RMS error is computed with a validation set of Q = 105. Figure 13 compares the results that are
obtained for the variance-based error indicator and the adjoint-based error indicator. The adjoint-based error indicator
behaves as expected and provides a better approximation of the actual error. Consequently a higher accuracy for a fixed
computational budget is achieved if the adjoint-based error indicator is utilized.

6 CONCLUSION

In this work, an hp-adaptive multi-element collocation method based on Leja nodes has been introduced. The presented
method allows to re-use already computed model evaluations after h- or p-refinement. The local interpolation grids are
stabilized after h-refinement by adding additional nodes and appropriately reordering the Leja sequence. To tackle the
computationally demanding case of higher dimensional problems, a dimension-adaptive basis expansion algorithm has
been employed. The work considered uniform, truncated normal, and beta distributed random inputs.

The numerical results showed that in the case of h-refinement, the proposed method is superior against the original
multi-element approaches that do not utilize information re-use. For low dimensions and functions with discontinu-
ities, the h-adaptive multi-element approach is the method of choice when compared against the spatially adaptive
sparse-grids method. In higher dimensional settings with continuous functions, approaches based on spatially adaptive
sparse grids are more efficient, because of the limitations of the underlying hypercube structure in higher dimensions.
Furthermore, the results also indicated that hp-adaptive refinement is to be preferred over pure h-refinement, especially
when higher-dimensional problems are considered. In case of hp-refinement, the proposed method was compared to
the generalized spatially adaptive sparse-grids combination technique, which is inferior if the objective function features
discontinuities or features low parameter dimensions. Again, the opposite is true for higher dimensional problems with
continuous functions. Moreover, the proposed method was capable of approximating a highly concentrated posterior
density in a two- and a four-dimensional inverse problem. Finally, the proposed method was applied to a PDE example
(Helmholtz equation), where we showed that a deterministic, adjoint-based error indicator is to be preferred, if available.

In summary, we may conclude that the proposed hp-adaptive collocation method based on Leja nodes is a reliable
approach for surrogate modeling and UQ for functions with reduced regularity, as well as for functions featuring large
gradients or sharp transitions. We expect, that the computational demand of the proposed method can be further reduced
when combined with methods that detect the critical areas in the parameter domain beforehand.14,17,86 Then, a reduced
number of h-refinement steps is expected, which in turn should reduce the overall complexity.
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