22 research outputs found

    Penerapan Model Pembelajaran Atraktif Berbasis Multiple Intelligences Tentang Pemantulan Cahaya pada Cermin

    Get PDF
    Penelitian ini bertujuan untuk mengetahui efektivitas penerapan model pembelajaran atraktif berbasis multiple intelligences dalam meremediasi miskonsepsi siswa tentang pemantulan cahaya pada cermin. Pada penelitian ini digunakan bentuk pre-eksperimental design dengan rancangan one group pretest-post test design. Alat pengumpulan data berupa tes pilihan ganda dengan reasoning. Hasil validitas sebesar 4,08 dan reliabilitas 0,537. Siswa dibagi menjadi lima kelompok kecerdasan, yaitu kelompok linguistic intelligence, mathematical-logical intelligence, visual-spatial intelligence, bodily-khinestetic intelligence, dan musical intelligence. Siswa membahas konsep fisika sesuai kelompok kecerdasannya dalam bentuk pembuatan pantun-puisi, teka-teki silang, menggambar kreatif, drama, dan mengarang lirik lagu. Efektivitas penerapan model pembelajaran multiple intelligences menggunakan persamaan effect size. Ditemukan bahwa skor effect size masing-masing kelompok berkategori tinggi sebesar 5,76; 3,76; 4,60; 1,70; dan 1,34. Penerapan model pembelajaran atraktif berbasis multiple intelligences efektif dalam meremediasi miskonsepsi siswa. Penelitian ini diharapkan dapat digunakan pada materi fisika dan sekolah lainnya

    Aluminumā€“Ligand Cooperative Nā€“H Bond Activation and an Example of Dehydrogenative Coupling

    No full text
    Activation of Nā€“H bonds by a molecular aluminum complex via metalā€“ligand cooperation is described. (<sup>Ph</sup>I<sub>2</sub>P<sup>2ā€“</sup>)Ā­AlH (<b>1b</b>), in which <sup>Ph</sup>I<sub>2</sub>P<sup>2ā€“</sup> is a tridentate bisĀ­(imino)Ā­pyridine ligand, reacts with anilines to give the Nā€“H-activated products (<sup>Ph</sup>HI<sub>2</sub>P<sup>ā€“</sup>)Ā­AlHĀ­(NHAr) (<b>2</b>). When heated, <b>2</b> releases H<sub>2</sub> and affords (<sup>Ph</sup>I<sub>2</sub>P<sup>ā€“</sup>)Ā­AlĀ­(NHAr) (<b>3</b>). Complex <b>1b</b> catalyzes the dehydrogenative coupling of benzylamine to afford H<sub>2</sub>, NH<sub>3</sub>, and <i>N</i>-(phenylmethylene)Ā­benzenemethanamine

    Directing the Reactivity of [HFe<sub>4</sub>N(CO)<sub>12</sub>]<sup>āˆ’</sup> toward H<sup>+</sup> or CO<sub>2</sub> Reduction by Understanding the Electrocatalytic Mechanism

    No full text
    Selective reactivity of an electrocatalytically generated catalystā€“hydride intermediate toward the hydrogen evolution reaction (HER) or reduction of CO<sub>2</sub> is key for a CO<sub>2</sub> reduction electrocatalyst. Under appropriate conditions, Et<sub>4</sub>N[Fe<sub>4</sub>N(CO)<sub>12</sub>] (Et<sub>4</sub>N-<b>1</b>) is a catalyst for the HER or for CO<sub>2</sub> conversion at āˆ’1.25 V vs SCE using a glassy carbon electrode

    Directing the Reactivity of [HFe<sub>4</sub>N(CO)<sub>12</sub>]<sup>āˆ’</sup> toward H<sup>+</sup> or CO<sub>2</sub> Reduction by Understanding the Electrocatalytic Mechanism

    No full text
    Selective reactivity of an electrocatalytically generated catalystā€“hydride intermediate toward the hydrogen evolution reaction (HER) or reduction of CO<sub>2</sub> is key for a CO<sub>2</sub> reduction electrocatalyst. Under appropriate conditions, Et<sub>4</sub>N[Fe<sub>4</sub>N(CO)<sub>12</sub>] (Et<sub>4</sub>N-<b>1</b>) is a catalyst for the HER or for CO<sub>2</sub> conversion at āˆ’1.25 V vs SCE using a glassy carbon electrode

    Aluminumā€“Amido-Mediated Heterolytic Addition of Water Affords an Alumoxane

    No full text
    Addition of the Oā€“H bonds in water across the aluminumā€“nitrogen bond of a molecular aluminumā€“amido complex affords an alumoxane. The reaction of (<sup>Ph</sup>I<sub>2</sub>P<sup>2ā€“</sup>)Ā­AlH (<b>1</b>) with water forms dimeric [(<sup>Ph</sup>HI<sub>2</sub>P<sup>ā€“</sup>)Ā­AlH]Ā­(Ī¼-O) (<b>2</b>) under mild conditions. Upon reaction of <b>2</b> with excess water [(<sup>Ph</sup>HI<sub>2</sub>P<sup>ā€“</sup>)Ā­AlĀ­(OH)]Ā­(Ī¼-O) (<b>3</b>) is formed with liberation of H<sub>2</sub>

    Aluminumā€“Ligand Cooperative Nā€“H Bond Activation and an Example of Dehydrogenative Coupling

    No full text
    Activation of Nā€“H bonds by a molecular aluminum complex via metalā€“ligand cooperation is described. (<sup>Ph</sup>I<sub>2</sub>P<sup>2ā€“</sup>)Ā­AlH (<b>1b</b>), in which <sup>Ph</sup>I<sub>2</sub>P<sup>2ā€“</sup> is a tridentate bisĀ­(imino)Ā­pyridine ligand, reacts with anilines to give the Nā€“H-activated products (<sup>Ph</sup>HI<sub>2</sub>P<sup>ā€“</sup>)Ā­AlHĀ­(NHAr) (<b>2</b>). When heated, <b>2</b> releases H<sub>2</sub> and affords (<sup>Ph</sup>I<sub>2</sub>P<sup>ā€“</sup>)Ā­AlĀ­(NHAr) (<b>3</b>). Complex <b>1b</b> catalyzes the dehydrogenative coupling of benzylamine to afford H<sub>2</sub>, NH<sub>3</sub>, and <i>N</i>-(phenylmethylene)Ā­benzenemethanamine

    A Sterically Demanding Iminopyridine Ligand Affords Redox-Active Complexes of Aluminum(III) and Gallium(III)

    No full text
    The combination of an electrophilic metal center with a redox active ligand set has the potential to provide reactivity unique from transition metal redox chemistry. In this report, substituted iminopyridine complexes containing monoanionic and dianionic <sup>Me</sup>IP<sub>Mes</sub> ligands have been characterized structurally and electronically. Green (<sup>Me</sup>IP<sub>Mes</sub><sup>ā€“</sup>)Ā­AlCl<sub>2</sub> (<b>1</b>), (<sup>Me</sup>IP<sub>Mes</sub><sup>ā€“</sup>)Ā­AlMe<sub>2</sub> (<b>2</b>), and (<sup>Me</sup>IP<sub>Mes</sub><sup>ā€“</sup>)Ā­GaCl<sub>2</sub> (<b>5</b>) have a doublet spin state which results from the anion radical form of <sup>Me</sup>IP<sub>Mes</sub>. Purple (<sup>Me</sup>IP<sub>Mes</sub><sup>2ā€“</sup>)Ā­AlClĀ­(OEt<sub>2</sub>) (<b>3</b>), (<sup>Me</sup>IP<sub>Mes</sub><sup>2ā€“</sup>)Ā­AlMeĀ­(OEt<sub>2</sub>) (<b>4</b>), and (<sup>Me</sup>IP<sub>Mes</sub><sup>2ā€“</sup>)Ā­GaClĀ­(OEt<sub>2</sub>) (<b>6</b>) are each diamagnetic. We have also investigated the solvent dependence of the decomposition of the <sup>Me</sup>IP<sub>Mes</sub> anion radical. Complexes <b>1</b> and <b>2</b> can be obtained from benzene and hexanes whereas the use of ether solvents results in the formation of undesirable (<sup>CH2</sup>IP<sub>Mes</sub><sup>ā€“</sup>)Ā­AlCl<sub>2</sub> (<b>1a</b>) and (<sup>CH2</sup>IP<sub>Mes</sub><sup>ā€“</sup>)Ā­AlCl<sub>2</sub> (<b>2a</b>) formed by loss of a hydrogen atom from the <sup>Me</sup>IP<sub>Mes</sub><sup>ā€“</sup> ligand. Electrochemical measurements indicate that <b>1</b>, <b>2</b>, and <b>5</b> are redox active

    Electrochemical Methods for Assessing Kinetic Factors in the Reduction of CO<sub>2</sub> to Formate: Implications for Improving Electrocatalyst Design

    No full text
    Thermochemical insights are often employed in the rationalization of reactivity and in the design of electrocatalysts for CO<sub>2</sub> reduction reactions targeting Cā€“H bond-containing products. This work identifies experimental methods for assessing kinetic aspects of reactivity. These methods are illustrated using [Fe<sub>4</sub>NĀ­(CO)<sub>12</sub>]<sup>āˆ’</sup>, which produces formate from CO<sub>2</sub> at āˆ’1.2 V versus SCE in either a MeCN/H<sub>2</sub>O solvent (95:5) or pH 6.5 buffered water. Elementary rates for each reaction step are identified along with the rate-determining step (RDS) as Cā€“H bond formation. Transition state kinetics were determined from an Eyring analysis for the rate-determining Cā€“H bond formation step using temperature-dependent electrochemical measurements. A lower measured Ī”<i>G</i><sup>ā§§</sup> (298 K, 12.3 Ā± 0.1 kcal mol<sup>ā€“1</sup>) in a pH 6.5 aqueous solution, compared with a Ī”<i>G</i><sup>ā§§</sup>(298 K) of 15.0 Ā± 0.1 kcal mol<sup>ā€“1</sup> in a MeCN/H<sub>2</sub>O solvent (95:5), correlates with faster observed reaction rates and provides a kinetic rationalization for the solvent-dependent chemistry. Taken together, the experimentally determined kinetic insights highlight that enhancement of the local concentration of CO<sub>2</sub> at catalystā€“hydride sites should be a primary focus of ongoing catalyst design. This will both enhance reaction rates and increase selectivity for Cā€“H bond formation over competing Hā€“H bond formation, because that step is fast in H<sub>2</sub> evolution reactions

    Mild Reduction Route to a Redox-Active Silicon Complex: Structure and Properties of (IP<sup>2ā€“</sup>)<sub>2</sub>Si and (IP<sup>ā€“</sup>)<sub>2</sub>Mg(THF) (IP = Ī±-Iminopyridine)

    No full text
    Use of SiCl<sub>4</sub> as an organometallic reagent can be complicated by access to Si<sup>3+</sup>, Si<sup>2+</sup>, and unwanted sigmatropic rearrangements. Herein we report a mild reduction route, using (IP<sup>ā€“</sup>)<sub>2</sub>MgĀ­(THF) (<b>1</b>) and Mg metal, to cleanly access (IP<sup>2ā€“</sup>)<sub>2</sub>Si (<b>2</b>). Electrochemical measurements show that IP<sup>2ā€“</sup> is stabilized by Si<sup>4+</sup> > Al<sup>3+</sup> > Mg<sup>2+</sup>

    (IP)<sub>2</sub>Ga<sup>III</sup> Complexes Facilitate Net Two-Electron Redox Transformations (IP = Ī±ā€‘Iminopyridine)

    No full text
    Reaction of M<sup>+</sup>[(IP<sup>2ā€‘</sup>)<sub>2</sub>Ga]<sup>āˆ’</sup> (IP = iminopyridine, M = Bu<sub>4</sub>N, <b>1a</b>; (DME)<sub>3</sub>Na, <b>1b</b>) with pyridine <i>N</i>-oxide affords two-electron-oxidized (IP<sup>ā€“</sup>)<sub>2</sub>GaĀ­(OH) (<b>2</b>) in reactions where the product outcome is independent of the cation identity, M<sup>+</sup>. In a second example of <i>net</i> two-electron chemistry, outer sphere oxidation of M<sup>+</sup>[(IP<sup>2ā€‘</sup>)<sub>2</sub>Ga]<sup>āˆ’</sup> using either 1 or 2 equiv of the one-electron oxidant ferrocenium afforded [(IP<sup>ā€“</sup>)<sub>2</sub>Ga]<sup>+</sup> (<b>3</b>) in either 44 or 87% yield, respectively. Reaction with 1 equiv of TEMPO, a one-electron oxidant, afforded the two-electron-oxidized product (IP<sup>ā€“</sup>)<sub>2</sub>GaĀ­(TEMPO) (<b>4</b>). Reduction of 2IP by 3Na and subsequent reaction with GaCl<sub>3</sub> yielded a 1:1 mixture of (IP<sup>ā€“</sup>)<sub>2</sub>GaCl and <b>1</b>. Most remarkably, all of these reactions are overall two-electron processes and only the (IP<sup>ā€“</sup>)<sub>2</sub>GaX and [(IP<sup>2ā€‘</sup>)<sub>2</sub>Ga]<sup>āˆ’</sup> oxidation states are thermodynamically accessible to us. Analogous aluminum chemistry previously afforded either one-electron or two-electron reactions and mixed-valent states. The thermodynamic accessibility of the mixed-valent states of (IP<sup>2ā€‘</sup>)Ā­(IP<sup>ā€“</sup>)Ā­E, where E = Al or Ga, can be compared using cyclic voltammetry measurements. These measurements indicated that the mixed-valent state [(IP<sup>2ā€‘</sup>)Ā­(IP<sup>ā€“</sup>)Ā­Ga]<sup>+</sup> is not significantly stabilized with respect to disproportionation on the time scale of the electrochemistry experiment. The electrochemically observed differences in thermodynamic stability of the mixed-valent state [(IP<sup>2ā€‘</sup>)Ā­(IP<sup>ā€“</sup>)Ā­E]<sup>+</sup> can be rationalized by the observation that the dihedral angle between the ligand planes containing the Ļ€-system of IP is roughly 5Ā° larger in all gallium complexes compared with aluminum analogs. Presumably, a larger dihedral angle provides weaker electronic coupling between the Ļ€-systems of IP via the Eā€“X Ļƒ* orbital. Alternatively, the observed difference may be a result of the ā€œinert pair effectā€: a contracted Ga component in the Eā€“X Ļƒ* orbital would also afford weaker electronic coupling
    corecore