14 research outputs found

    A framework to assess the quality and impact of bioinformatics training across ELIXIR.

    Get PDF
    ELIXIR is a pan-European intergovernmental organisation for life science that aims to coordinate bioinformatics resources in a single infrastructure across Europe; bioinformatics training is central to its strategy, which aims to develop a training community that spans all ELIXIR member states. In an evidence-based approach for strengthening bioinformatics training programmes across Europe, the ELIXIR Training Platform, led by the ELIXIR EXCELERATE Quality and Impact Assessment Subtask in collaboration with the ELIXIR Training Coordinators Group, has implemented an assessment strategy to measure quality and impact of its entire training portfolio. Here, we present ELIXIR's framework for assessing training quality and impact, which includes the following: specifying assessment aims, determining what data to collect in order to address these aims, and our strategy for centralised data collection to allow for ELIXIR-wide analyses. In addition, we present an overview of the ELIXIR training data collected over the past 4 years. We highlight the importance of a coordinated and consistent data collection approach and the relevance of defining specific metrics and answer scales for consortium-wide analyses as well as for comparison of data across iterations of the same course

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    Training bioinformaticians in High Performance Computing

    No full text
    In the last decade, bioinformatics has become an indispensable branch of modern science research, experiencing an explosion in financial support, developed applications and data collection. The growth of the datasets that are emerging from research laboratories, industry, the health sector, etc., are increasingly raising the levels of demand in computing power and storage. Processing biological data, in the large scales of these datasets, often requires the use of High Performance Computing (HPC) resources, especially when dealing with certain types of omics data, such as genomic and metagenomic data. Such computational resources not only require substantial investments, but they also involve high maintenance costs. More importantly, in order to keep good returns from the investments, specific training needs to be put in place to ensure that wasting is minimized. Furthermore, given that bioinformatics is a highly interdisciplinary field where several other domains intersect (such as biology, chemistry, physics and computer science), researchers from these areas also require bioinformatics-specific training in HPC, in order to fully take advantage of supercomputing centers. In this document, we describe our experience in training researchers from several different disciplines in HPC, as applied to bioinformatics under the framework of the leading European bioinformatics platform ELIXIR, and analyze both the content and outcomes of the course

    A framework to assess the quality and impact of bioinformatics training across ELIXIR.

    Get PDF
    ELIXIR is a pan-European intergovernmental organisation for life science that aims to coordinate bioinformatics resources in a single infrastructure across Europe; bioinformatics training is central to its strategy, which aims to develop a training community that spans all ELIXIR member states. In an evidence-based approach for strengthening bioinformatics training programmes across Europe, the ELIXIR Training Platform, led by the ELIXIR EXCELERATE Quality and Impact Assessment Subtask in collaboration with the ELIXIR Training Coordinators Group, has implemented an assessment strategy to measure quality and impact of its entire training portfolio. Here, we present ELIXIR's framework for assessing training quality and impact, which includes the following: specifying assessment aims, determining what data to collect in order to address these aims, and our strategy for centralised data collection to allow for ELIXIR-wide analyses. In addition, we present an overview of the ELIXIR training data collected over the past 4 years. We highlight the importance of a coordinated and consistent data collection approach and the relevance of defining specific metrics and answer scales for consortium-wide analyses as well as for comparison of data across iterations of the same course

    COVID-19 due to the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: a prospective observational cohort study

    Get PDF
    The Delta (B.1.617.2) variant was the predominant UK circulating SARS-CoV-2 strain between May and December 2021. How Delta infection compares with previous variants is unknown. This prospective observational cohort study assessed symptomatic adults participating in the app-based COVID Symptom Study who tested positive for SARS-CoV-2 from May 26 to July 1, 2021 (Delta overwhelmingly the predominant circulating UK variant), compared (1:1, age- and sex-matched) with individuals presenting from December 28, 2020 to May 6, 2021 (Alpha (B.1.1.7) the predominant variant). We assessed illness (symptoms, duration, presentation to hospital) during Alpha- and Delta-predominant timeframes; and transmission, reinfection, and vaccine effectiveness during the Delta-predominant period. 3581 individuals (aged 18 to 100 years) from each timeframe were assessed. The seven most frequent symptoms were common to both variants. Within the first 28 days of illness, some symptoms were more common with Delta versus Alpha infection (including fever, sore throat, and headache) and some vice versa (dyspnoea). Symptom burden in the first week was higher with Delta versus Alpha infection; however, the odds of any given symptom lasting ≄ 7 days was either lower or unchanged. Illness duration ≄ 28 days was lower with Delta versus Alpha infection, though unchanged in unvaccinated individuals. Hospitalisation for COVID-19 was unchanged. The Delta variant appeared more (1.49) transmissible than Alpha. Re-infections were low in all UK regions. Vaccination markedly reduced the risk of Delta infection (by 69-84%). We conclude that COVID-19 from Delta or Alpha infections is similar. The Delta variant is more transmissible than Alpha; however, current vaccines showed good efficacy against disease. This research framework can be useful for future comparisons with new emerging variants
    corecore