3,066 research outputs found

    Stein's method via induction

    Full text link
    Applying an inductive technique for Stein and zero bias couplings yields Berry-Esseen theorems for normal approximation for two new examples. The conditions of the main results do not require that the couplings be bounded. Our two applications, one to the Erd\H{o}s-R\'enyi, random graph with a fixed number of edges, and one to Jack measure on tableaux, demonstrate that the method can handle non-bounded variables with non-trivial global dependence, and can produce bounds in the Kolmogorov metric with the optimal rate.Comment: 59 page

    Quantification of root nitrification capacity of bibb lettuce plants for use in a recirculating aquaculture system (RAS)

    Full text link
    This research examined the feasibility of Bibb lettuce roots to provide a surface for nitrifying microbes to colonize, removing ammonia from wastewater. The work is geared towards sizing a rotational plant system to act as a natural biofilter to treat wastewater from the fish farming industry, making a recirculating natural system possible. It was observed that these natural, biotic surfaces provide a more suitable area for microbes to grow compared to inert materials. Nitrification rates were quantified, and were similar in magnitude to pre-experiment estimates. In addition, a correlation between Bibb lettuce leaf mass and root surface area was calculated, which greatly simplifies the calculation necessary to size a plant filtration unit

    A Computer Model of Intracranial Pressure Dynamics During Traumatic Brain Injury that Explicitly Models Fluid Flows and Volumes

    Get PDF
    This report documents a computer model of intracranial pressure (ICP) dynamics that is used to evaluate clinical treatment options for elevated ICP during traumatic brain injury (TBI). The model uses fluid volumes as primary state variables and explicitly models fluid flows as well as the resistance, compliance, and pressure associated with each of the compartments (arteries and arterioles, capillary bed, veins, venous sinus, ventricles, and brain parenchyma). The model has been tested to assure that it reproduces a correct physiologic response to intra-and extra-parenchymal hemorrhage and edema, and to therapies directed at reducing ICP such as cerebral spinal fluid drainage, mannitol administration, head elevation, and mild hyperventilation. The model is able to replicate observed clinical behavior in many cases, including elevated ICP associated with severe cerebral edema, subdural hematoma, and cerebrospinal fluid blockage. The model also successfully reproduces tne cerebrovascular regulatory mechanisms that are activated during TBI in response to various abnormalities such as high or low systemic blood pressure. We conclude that incorporating fluid volumes and flows into a model of lCP dynamics significantly improved its clinical utility. Additional improvements are anticipated (or wil1 accrue or will result) as the specific mechanisms that modify cerebral compliance and autoregulation during TBI and elevated ICP are further delineated

    Deep Neural Convolutive Matrix Factorization for Articulatory Representation Decomposition

    Full text link
    Most of the research on data-driven speech representation learning has focused on raw audios in an end-to-end manner, paying little attention to their internal phonological or gestural structure. This work, investigating the speech representations derived from articulatory kinematics signals, uses a neural implementation of convolutive sparse matrix factorization to decompose the articulatory data into interpretable gestures and gestural scores. By applying sparse constraints, the gestural scores leverage the discrete combinatorial properties of phonological gestures. Phoneme recognition experiments were additionally performed to show that gestural scores indeed code phonological information successfully. The proposed work thus makes a bridge between articulatory phonology and deep neural networks to leverage informative, intelligible, interpretable,and efficient speech representations.Comment: Submitted to 2022 Interspeec

    Role of Cytokines in Thymus- Versus Peripherally Derived-Regulatory T Cell Differentiation and Function

    Get PDF
    International audienceCD4 + CD25 + Foxp3 + regulatoryT cells (Tregs) are essential players in the control of immune responses. Recently, accordingly to their origin, two main subsets of Tregs have been described: thymus-derived Tregs (tTregs) and peripherally derived Tregs (pTregs). Numerous signaling pathways including the IL-2/STAT5 or theTGF-β/Smad3 pathways play a crucial role in segregating the two lineages. Here, we review some of the information existing on the distinct requirements of IL-2, TGF-β, and TNF-α three major cytokines involved in tTreg and pTreg generation, homeostasis and function. Today it is clear that signaling via the IL-2Rβ chain (CD122) common to IL-2 and IL-15 is required for proper differentiation of tTregs and for tTreg and pTreg survival in the periphery. This notion has led to the development of promising therapeutic strategies based on low-dose IL-2 administration to boost the patients' own Treg compartment and dampen autoimmunity and inflammation. Also, solid evidence points to TGF-β as the master regulator of pTreg differentiation and homeostasis. However, therapeutic administration of TGF-β is difficult to implement due to toxicity and safety issues. Knowledge on the role of TNF-α on the biology of Tregs is fragmentary and inconsistent between mice and humans. Moreover, emerging results from the clinical use of TNF-α inhibitors indicate that part of their anti-inflammatory effect may be dependent on their action on Tregs. Given the profusion of clinical trials testing cytokine administration or blocking to modulate inflammatory diseases, a better knowledge of the effects of cytokines on tTregs and pTregs biology is necessary to improve the efficiency of these immunotherapies

    Black soliton in a quasi-one-dimensional trapped fermion-fermion mixture

    Full text link
    Employing a time-dependent mean-field-hydrodynamic model we study the generation of black solitons in a degenerate fermion-fermion mixture in a cigar-shaped geometry using variational and numerical solutions. The black soliton is found to be the first stationary vibrational excitation of the system and is considered to be a nonlinear continuation of the vibrational excitation of the harmonic oscillator state. We illustrate the stationary nature of the black soliton, by studying different perturbations on it after its formation.Comment: 7 pages, 10 figure

    Depletion forces near a soft surface

    Full text link
    We investigate excluded-volume effects in a bidisperse colloidal suspension near a flexible interface. Inspired by a recent experiment by Dinsmore et al. (Phys. Rev, Lett. 80, 409 (1998)), we study the adsorption of a mesoscopic bead on the surface and show that depletion forces could in principle lead to particle encapsulation. We then consider the effect of surface fluctuations on the depletion potential itself and construct the density profile of a polymer solution near a soft interface. Surprisingly we find that the chains accumulate at the wall, whereas the density displays a deficit of particles at distances larger than the surface roughness. This non-monotonic behavior demonstrates that surface fluctuations can have major repercusions on the properties of a colloidal solution. On average, the additional contribution to the Gibbs adsorbance is negative. The amplitude of the depletion potential between a mesoscopic bead and the surface increases accordingly.Comment: 10 pages, 5 figure
    corecore