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CHAPTER I 

INTRODUCTION 

For the bioenvironmental engineer and.scientist, research and 

development_ of physical, chemical., and biological processes .for preven­

tion and retardation .of ·ecological degradation in the _environment, j .e., 

life. support system, are of paramount. concern. 

Wate.r poll uti.on ·abatement and mai nte.nance of -.conditions· of -high 

quality in the aqueous environment ar~ often.-acc0,mplished by treatment 

and disposal of indu.stri.al and municipal wastewaters, using activated 

sludge, mixed microbial pop_ulations. which utilize the organic pollu­

tants to produce new cells; the ultimate end products are carbon dioxide· 

and wate,r.· The extended aeration act_ivat.ed sludge or to.tal oxfdation 

system is a biological process which ,provides purifica~ion .of waste­

water containing organic matter capable of exerting a biochemical oxy­

gen dema,nd •. The puri"fi cation is brought about through assimi l a~i on 1and 

oxida~ion., Ulti_mat~. disposal of the net growth of cells -due to the 

organic matter.in the wastewater is brought.about-J>y endogenous.respir­

ation or aerobic auto-oxidation of. the.sludge mass. The research inves­

tigation .herein is concerned mainly with bacterial metabolhm and. 

microbial gr~wth kinetics :during substrate removal an~ with. the degree· 

of autodigestion and its kineti~s in the subsequent endogenous ph~ses 

of once-fed batc.h act_ivated sludge populati,ons of sewage origi_n, fed a 

1 



low molecular weight organic; compound (potential polluta·nt) to whic~ 

the population ~ad been previously acclimated. 

2 

In general , .. growth of -natura 1 microbial_ cultures can be described 

using three metapolic .nconstants:11 sludge yield (Y) and the physiologi .. 

cal growth 11 e<;msta.nts ,n maximum exponential growth rate (µmax), and 

saturation constant ·or· geometrical curve descri ptQr (Ks)_ .. Cell or 

sludge yield. informs the bioengine~r as.to the fractioTl of bioche,n-. 

ically ava.Hable carbon source (LlCOD) of an exogenous substrate that is 

channelled into cellular mass during the metabolism of-bacteri-al cul­

tures-and, consequently, the accumulation of"a sludge m~ss event@lly 

to be dispbsed of, It ·is. generally assumed that cell yield is constant 

during 1 ogarithmic growth of microorganisms, but operational sludge . 

yield data. are usually obtained, after the exponential _phase_, i.e.; dur­

ing ·either the declining growth or the st~tiona-ry phases •. The inves-:. 

tigation her~_in is. in part addressed to. determinat.ion _of the constanc;y 

of\cell yield. during the ~ntire course-of autocatalytic growth of 

microorganisms on, a non-carbohydrat'e, low molec1.1lar weight organic,com-. 

pound (acetic acid), 

The kinetic .growth con~tan.ts., :s·pec~-fic ,grow~h rate·(µ} and .satura­

tion constant (Ks), can be ccmsi~fi"ed' as mathematj~al. descr.ipto.rs- for· 

kinetic behavior .. of: growing .microb.ial systems. These 11 constants 11 

when inserted into the hyperbolic .function _(Monad equation), relate the 

speci_fic growth rate; µ, to substrate concentration. The investigative 

purpose here,in was to determine the effect of substrate concentration 

on exponential growth rate. with,.special atten.tion to bacterial cells 

growing at sub.strate cqncentrat.ions. below µmax· These metabolic growth 

11 constants., 11 sludge yield (Y-), maximum exponential growth rate (µmax), 
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and 11 saturation constant 11 (Ks)' are applicable as descriptors for the 

growth of microbial populations in discontinuous as well as continuous 

systems in the laboratory industrial fermentor or the natural environ ... 

ment. They are especially important in con~idering models for acti ... 

vated sludge systems which are designed to be operated as steady ... state, 

completely mixed, continuous flow systems., The theoretical develop ... 

ments assume steady ... state conditio.ns in the .reactor (i.e., the aeration 

unit) and for this to be so, the microbial population should always be 

in exponential growth and the specific growth rate is related to the 

dilution rate, a hydraulic factor .in continuous flow wastewater treat ... 

ment systems that is subject to engineering control. 

The 11 endogenous 11 or autodigestive phase, was examined in these 

studies because the operational biochemical stability and efficiency of 

the activated sludge ... total oxidation process which employs 100 percent 

sludge return and no sludge wastage relies on a metabolic b~lanctng of 

autodigestion and new sludge synthesis, thus negating biological solids 

accumulation to an extent which would require sludge wastage. 

Thus, in this investigation, the overall aim was to study and gain. 

insight into quantitative description of the entire cycle of growth and 

decay of a heterogeneous (i.e., natural) bio ... mass. 



CHAPTER II 

LITERATURE-REVIEW 

The relationship between_ the _yield coefficient., Y, ,and the chemi­

cal constituents of the organic carbon source metaboliz~d, the nature . 

and ch~racteristics of the waste, and the type of organism., is a topic· 

of which there. has been considerable speculatfon and discussion,. both 

in the -basic sc_ience and engineering .literature. 

The concept tha~ the amount of sludge produce~ durJng biological 

respiration and synthesis vari.es with the chemical na~ure of the wast~ 

was reported by Placak and Ruchhoft . (1 ) , Sawyer (2), ,and McCabe and 

Eckenfelder (3). Placa-k, et al., investigating the u't;ilization of:pure 

organic substrates, reported sludge yields -on carbohydrate wastes -in. 

the range of ·65 to 85 .percent. · Sawyer•·s studies of various carbon 

sources showed conclusi-vely. t~at yield values of -.50 to 60 percent can 

be expected. McCabe and Eckenfe1der relat~d cell yi~ld tq the "frac­

tion of-BOD. removed which is synthesized to new sludge," and takfog 

into account the amount ·of -_llself-,metabol ism, 11 reported a yield value of 

O. Z for gl uc~se. Similar results -are reported by Wuhrmann (4) fo-r · the 

compounds glucose, peptone, ~nd lactate. 

The theory .that the synthesis of a compound ·is fixed, i.e.-, is . 

independent of .the nature of.the.organic matter assimila~ed, appears to 

have been proposed by Helmers, et al. (5), Heukeleki,an, ,et al. (6), 

4 
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.. - Hoover, et al. (7), and.McKinney (8) .. Helmers, et al. _reported.that_ 

the rate of activated sludge growth is proporti anal to the BOD _reduc­

tion of the waste and independent of the nature of the waste load. 

Heukelekian,: et al. showed that sludge production .can best be expressed 

by r~lating .the volatile su;spended solids in the mixed liquor to the 

BOD of t~e waste feed.: Hoover, et _al.. researcheci the assimilation of a_ 

dairy waste and, using COD as a parameter of waste purificat_ion, found 

the microorganisms in an activated sludge to oxidi~~ 32 to 43 percent 

of ·the carbon, .with the remainder -incorporated into the ce:lls._ McKinney 

concluded that two-thirds of the ultimate. oxyg_en demand of th_e organic 

matter is employed for .cellular synthesis. However, in a lat~r publi- _ 

cation, Burkehead and McKinney ( 9) fou11d that the energy synthesis 

reaction~ are substrate~dependent .. 

That portion of the substrate channelled into synthesis has also 

been descri.bed using thermodynami_c:concepts and paramet~rs. Bauchop 

and El sdon (l O) proposed a di ffe~ent approach to sludge syn thesis by 

relating c~ll yield to the calculated theoretical prqduction -0f-ATP 

from an energy souce during _metabolism by several anaerobic -cultures. 

Servi zi and Bogan (11 ) , employing .the theory of Bauchop and El sdon, . 

further postulated a concept of constant proportionality of ATP produc­

_tion to the free energy released. through substrate oxidation, and 

stated that for carbohydrates, the cell yield was 0.38 g of cells/gm 

COD removed in aeroblcal.ly growing systems. -

McCarty (12). recognized that rel~tion between free energy, ATP, 

and cell yield mu_st take into cognizance two operations: the generation. 

of the ATP and its coupling to useful syn_thesis.: He developed a for-. 

mula which relates cell yield to free energy and conta.ins transfer 
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efficiency proportionality constants. For acetic acid, a yield of 0.41 

g of-dry sludge solids/gm COD removed,was reported. 

Operating continuous fl ow reactors with pure and mixed cultures . 

at various diluti.on rates, Hetling, .et al. {13) found that effective 

yield coefficients .are not constant with substrate and organism. For 

sodium acetate, he showed a. true yield co.efficient {effective yield 

coefficient corrected for endogenous "heterogeneous metabolism~) for 

Pseudomonas fluorescens of O, 19, and for _g_. co 1 i, O, 27 mg ce 11 S/IT.lg sub­

strate COD._ These values illustrate the variability of cell yield. 

A review of th.e energy concepts. of oxidative assimilation by 

Servi zi and Bogan, McCarty, and McKinney; is presented by Burkehead and 

McKinney {14). In addition, the relationship between oxygen and heat 

of reaction .is shown to support the concept of energy and synthesis on 

an oxygen equivalence basis.· 

Payne (15) has made a review of. yield factors involved in 1) yield 

and ATP generation, 2) yield and electron availability in substrate, 

and 3) yields per kilocalorie of total energy. taken by both assimila­

tion and dissimilati_on from the medium during growth. 

In reviewing the energetic behavior of the growing microbial cell,· 

Forest (16) points out that during. oxidative metabolism, the knowledge 

of the efficiency of oxidative phosphorylation is incomplete. 
' 

It should be noted that speculation.on .the number of mo.~es of ATP· 

that can be generated from aerobic, catabolism represents the greatest 

impediment to experimental determinations·of YATP for aerobes. It also 

seems that a prediction of yield for microorganisms in activated sludge 

and quantitation of the transformation of the energy of substrate mole­

cules ,into cells and end products by bacterial metabolism _based solely 



.. on .. thermodynamic, consid.erations of the waste is a rather fruitless_ 

exercise in attempts to estimat.e or predict cell yield . 

. Operating. batch .. activated s.ludge systems for 90, 90, 65 days at 

several different initial solids concentrations and feeding glucose as 

sole carbon. so_urce, Rao and .. Gaudy 07 ), observed an average cell yield 

of 65 percent with a statistical range.of yield from 48 to 82 percent, 

and stated that variance in cell yield was due to changes in predomi­

nance of species in the population. 

7-

Gaudy and Ramanathan (18) have compiled cell yield data over a 

peri-od of eight years for acclimated natural microbial populations of 

sewage origin grown .. on glucose as sole growth-limiting fa-ctor in batch 

and co.ntinuous flow systems. A stat.istical analysis shows for batch 

studies a mean yield of 61 . 9 percent for 118 experiments with a range 

of 36 to 88 percent, a_nd for continuous fl ow experi-ments, a mean yield 

of 49.9 percent for 81 experiments with a range of 32 to 69 percent. 

From this study they concluded that cell yi,eld is subject to ecological 

variance in mixed microbial populattons. 

Under defined and comparable conditions with methodology and para­

meters the same· for a·ll determinations of sludge yield, Ramanathan and 

Gaudy (19) presented a statistical summary of,sludge yield values for 

heterogeneous populations of sewage origin grown on various carbon 

sources. From six batch experiments. with acetate, a mean yield of 41.2 

percent was obtained with a range of 26 to 53 percent~ 

During substrate removal and biologi_cal growth, the physiological 

growth parameters for cells, .maximum specific gr:owth rate (µmax), satu-, 

ration constant (\L and cell yield (Y)., are very important kinetic 

11 constantsll in the development of kinetic models for pure and heterogen"'.' 

eous microbial cultures. 
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The concept of a single. continuous.functiol'! of decreasing slope 
., 

(hyperbolic function) .proposed by Monad, (20).,. which is discussed exten-

isvely later, is often used when desc;ribing the relationship between 

exponent,i al growth rate.{µ) .and substrate concentration. However, 

Garret and Sawyer (21) proposed using.two diffeirent functions to des­

cribe the re.lationship between .specific :growth rate and substrate con-

centration; one function for the.lower range of su~strate concentration . . . 

where growth rate is assumed to. be 1 i near, and one for._ the higher range 

of substrate concentration where growth rate.is considered to be con­

stant and independent of substrate concentration. 

McCabe and Eckenfelder (3) have concluded that the critical sub­

strate concentration at which the:growth rate approaches a maximum 

varies with cell concentration. · It is known here that the two should 

be independent. 

Schulze has employed a .modification of ·ii hyperbolic equation pro­

posed by Teissier (22), Schulze .employed data from a pure culture 

study using .Escherich.ia coli (23.) .and. data obta.ined from wastewater 

treatment plants· (24), He concluded that Teissier's -modification 

should yield satisfactory results. 

Gaudy~ Ramanathan, and Rao (25) .compared the Monad, Teissiar, and 

Moser (26) .models for growth k.inetics .of natural populations. in con­

tinuous flow completely mixed reactors., and concluded that the Monad 

model best described the re1ati.onship between µ and S. They also 

found the yield coefficient. (Y) to .he. lower in batch operated systems 

than in continuous flow systems. They also found tha,t Ks values of 75 

to 125 mg/1 and µmax values. of 0.5 to 0.6 hr-l with a yield coefficient 

of about 0,6 was usua·lly observed, In a continuatjon of their research, 
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Ramanathari .and .Gaudy (27} have .. p.resentad, .. equations and computational 

analyses for a steady-state· model that describes the kinetic behavior: 

of an activa,ted sludge system. In.the:ir .. model, .recycle cell concentra­

tion,. XR, .is employed as. a contro:llable. operational constant. Their 

model differs rather drastical.ly from that recommended by Herbert, et 

al. {28}(also see Herbert f:29]):, in wh.ich the recycle sludg,e concentra-

tion factor, C, is the operation constanto This constant in Herbert's 

model is the ratio of biological solids in the recycle flow .to biologi­

cal solids, X, in the reactor-(i.eo, C = XR/X). 

Peil and Gaudy (30), using mixed microbial cultures .of sewage 

origin growi.ng on various substrates including municipal sewage, found 

the rectangular hyperbola to provide satisfactory description of the 

relationship between specific growth rate and substrate concentration. 

More recently, Gaudy, Obayashi; and Gaudy (31 ) have. presented data 

which is in aposition to the Monad .,theoryo This article is discussed 
. . I . 

later in greater length. 

After accumulation of· biplogjca, solids during the initi~l sub­

strate removal and.growth phases xesulting from microbial metabolism of 

thE! waste to cellular .compounds .and.end .. products, .it becomes nece~sary 

to dispose of this synthesized bio-mass. The activated sludge-exten.ded 

aeration proc~ss is a system.for treatment of the waste and ultimate 

disposal of such excess organic .matter produced during treatment.a The 

operation. of a 11 total oxidation 11• system .. implements the aerobic dissi­

pation of sludge by 11 endogenousll or autod.igestive metabolism, and a 

phase of this investigation herein is directly concerned with prolonged . . 

endogenous aeration .of an .accumulated bio-mass. 

Hoover~ et al . .(32) researched the aerobic autodigestion of 
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.... bacterial cells fed skim milk solids and .. derived an average endogenous 

resp.iration rate of 3 to 4. ppm o2/hr .for .. ,a, sJudge. produced by oxidation · 

of 1000 ppm skim milk solids . .1n comparison, the O~ consumpti~n rate 

of the same organisms during the . ..initiat.period of assimilation was .40 

to 45 ppm. o2 hr, .indicating considerabl.Y. less energy .. utilization during 

endogenous .me~abolism.· In a latE!r pu~lication, Perges, et .al. (33) 

noted that for the total auto-oxidative digestion ,of 500 ppm cell sub­

stanc~ produce,d from -1000 ppm skim milk sol ids, a timE! of approximat;ely .. 

160 hours was necessaryo 

Forney and Kountz (34), using a cont.inuous flow system treating a 

ski.m milk was.te,. noted that; 11 total bio-oxidat;ion''. is possible an_d that 

a solids equilibrium was. attainable. 

Operating daily ._batc~~fed activate.cl sludge .. syst~ms on sodium ace­

tate as substrate with 100 percent .. s]udge.recycle over.a period .of 35 

days, Symons and .McKinney (35.) . refuted the concept of to.tal oxi-da.tion . 
.. 

They observed an accumu]at.ion,.of·volatile.biologi,cal .solids ·during .the 

. entire time period· of each experi·ment. They .. concluded that the accumu­

lated material which was observed to consist in p~rt of extracellular· 

polysat:.chari de, was. non-oxi d.izabl e .. mater·ia 1 , Le., .bio-1 ogicaJly .inert 

materi-al. They concluded that. sludge wastage .is necessary for success­

ful b.iochemical · performance of act.ivated.s.l udge syst~ms.: 

. Kountz and Forney (36 ), 1 atE!r rejected the concept of ·total oxida-. 

tion on the principle that it .is- 11 not possible wi.thin reasonable times'' 

and will require excess size. of..ae.ration. tanks .in was.te treatment sys-,. 

terns" After operating a continuous· flow .. act,ivated sludge_ system fo.r 

six mont;hs., they c:oncluded that a residual material remained comprising. 

20 to 25 percent of the sludge synth.esized .. They further concluded an· 
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endogenous loss of two percent/day and a .buildup of an inert fraction · 

at the rate of 0.6 percent/day. with .. respect .. to . .the total wei.ght of the 

organisms; occurred in the system. 

In. later researc.h, Jasewicz .and .Porges (37)(38) studied the -oxi.da-. 

tion :and assimilat'i,on of whey: wast~s by. aerobic ,organisms, and reported 

that sludge accumulation occurred. - They. attested positively to .the 

th~oretical possibility of a total .oxi,dation plant, but -stated that 

actual operation_al conditions,. will not.facilitate total sludge oxida­

tion and occasicfoal sludge wastage is. n~cessary • 

. In .. a continuing effort to def.i.ne th~.·theoretical. basis ·of ·total 

oxidation and endogenous respiration, Washington and Symons· (39} 

.researched the accumulation of volatile biological sol ids grown on. 

various.organic compounds under. batch~fed and.continue.us flow complete­

ly mixed systems. They concluded that there would be .an organic sludge 

buildup of-10 to .15 ·percent of the ultima~e. BOD of the substrate 

removed for carbohydrate or fatty acid."feeds. Investigating the extent 

of degradation of--cellular .. organic p0lymers during endogenous aeration,. 

they concluded that the bio.logically .. inert organic.solids that accumu­

late and are resistant to degradation during 11 endogenous 11 metabolism, 

either by the organi Sl'f:l which propuc.ed .. the substance or by a predator,_ 

are .mainly polysaccharide·,in .content. (47. to. 56 .percent); prote,in (39 to 

.47 percel')t), .and fats (3 to: 8 percent) , .. comprise the remainder. 

Mcwhorter and Heukel ekian .(40) studied once-fed (glucose) batch 

activated sludge systems over an extended .. aeration period of 25 days •. _ 

After approximately ten days, the. oxidation rate of the sludge increas­

ed very slowly. The· cell mass remaining r:epresented. 40 percent,·C)f the 

maximum accumulation of sludge.produced,. or 12 percent of the 
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. . . theoreti ca 1 oxygen demand of substrate· glucose. The cherni ca 1 compo­

Si tion of the remaining ce,11 mass was not determined directly, .but was 

the ori.zed to be carbonaceous . in con.tent. 

In a recent research investigation, .. Thabaraj and Gaudy (41) oper­

ated onc~-fed. long-term batch activated sludge systems growing on either­

gl)'cerol or sorbitol as sole carbon source and growth-limiting _nutri:-

ent for extended durations. of endogenous metabolic activity. They pre.,. 

sented evidence that t0tal aerobic autodigestion of iin acc_umulated cel 1 

mass is definitely possible. · 

The theoretical soundness of the extended aeration process is 

usually questioned by researchers who .contend that there has to be an 

inactive fraction which cannot be metabolized or cannot. metabolize the 

influent waste and therefore build up in the system and necessitate 

sludge wastage and a possible breakdown of the bioch'E!tliical mec~anisms 

in the system. Recently, .• extens.ive. research concerning the availability 

. of.certain cellular organic molecules and biopolymers which can exist 

as this "inert" fraction -as a .possjb.le food or nutrient source, has 

been completed by Obayashi {42). Specifically, investigative experi- . 

ments pertained to the biode.gradative. nature of extracellular ·poly­

saccharid~ and sonicate (the solub:le. portion of the ce_lls released. 

after breakage of the cell waUs and.capsuJar.layer). Short-term 

batch experiments were conducted using polysacchari,de harvested from 

various pure culture species .and: cell sonicate was also supplied as 

sole carbon source. In a recent article, Obayashi anc:I Gaudy (43) have, 

shown bacterial extracellular heteropolysaccharide does not constiJute 

biologically inert fraction .. Also, ..in the Oklahoma. State University. 

bioenvironmental research and engineering laboratories~ Yang (44) has 
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, completed a four-year. study in wh.ich.a continuous flow pilot ·plant of 

the extended aeration process was operat~d with and withput an assist 

by chemical hydrolysis of portions of ·the recycled sludge. In recent 

articles relating to these: studies, .. Gaudy; et al. presented, data. show­

ing .cyclic peri-ods of biological. sol.ids·.accumulation and de-accumulation 

in the aeration unit, and point~d out. that.during times of de­

accumulation, the biochemical .efficiency remained high. They also found 

that there was riot a continual, buildup of an inactive fraction of bio­

logical solids, and at no time was there any failure of biochemical 

mechani~ms of purification,. However, it was observed that at times, 

cell concentration became so great that it caused settling problems in 

the clarification chamber. A solution _to this problem was to chemically. 

hydrolyze a portion of the ret1.1rn sludge, and cycle it to the aeration 

chamber with the regular influent sul:1.stracte. They named this modifica­

tion of the process, the 11hydrolyt.ic a:tsist. 11 The pilot plant was 
. I 

operated for a one-year period in which portions of. the biological 

solids were periodically withdrawn,.h ydrolyzed, and recycled, and it 

was fo.und that this. process .modificatiOPLis: operationally feasible and 

.. provides engineering control. over the. concentration -0f organisms in the 

total oxidation or .extended aeration .process (45). 



CHAPTER III 

.... · .. MAIERIALS .. AND. METHODS· 

A. . Experimental:. Proto co 1 

Mixed microbial. cell populatfons were· developed on acetic ac:id as 

the .sole carbon .. source. from·.an initial sewage seed obta.ined from the 

primary clarifier ·effluent of. the m-unicipal. wastewater treatment plan~ 

in Stillwater, Oklahoma. The compos;.tion of the synthetic waste {growth 

medium) is .given in Ta.ble I. 

TABLE I 

CONCENTRATIONS ·OF INORGANIC COMPONENTS OF SYNTHETIC WASTE 
PER-1000 mg/1 COD· OF ACETIC ACID. 

Compound 

(NH4)2so4 

MgS04·7H20 

FeC1 3·6H20 

MnS04·H20 

Ca Cl 2 .. 

1.0 M potassium phosphate buffer. pH 7.0-

Tap water. {for -trac~ elements) 

Di sti 11 ed water 

14. 

Concentration 

500 mg/1 

l 00 mg/1 

o. 5 mg/1 . 

1 o .mgi1 

7~5 mg/1 

55 ml 

100 ml 

to·volume 
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The cells w'ere cultivated in batch reactors (500-rnl Erlenmeyer 

flasks). The reaction liquor consisted of growth medium ~nd.an inoculum 

of sewage seed. Aeration was provided by a shaker apparatus operating 

at 100 oscillations/m.in. · Daily, a portion at the mixed liquor was trans-
, 

ferred to a flask containing fresh growth medium. ,Xcel imation of the 

cens to the substrate for four days was precedent to experimental use. 

All experimental procedures were conducted at room tempterature (21 ! · 

2°c), and for each batch aeration ,experiment performed, a different 

initial sewage seed was employed. 

1. Long-term Batch Experiments 

After the acclimation period, the organisms were harvested and a 

portion of the acclimated cell suspension was utilized to inoculate the 

synthetic waste. The remaining volume of seed culture was used for 

growth rate experiments (described later) .. The long-term batch experi­

ments were accomplished initially in two- and fo1,1r-liter Erlenmeyer 

flasks with. a substrate concentration of 1000 mg/1 acetic acid. As the 

volume decreased, the mixed liquor was transferred to one- and two-

1 iter Erlenmeyer flasks. Compressed air saturated by passage through a 

water trap was supplied ~hrough sintered glass diffusers. At the time. 

of inoculation, a portion of the suspension in th.e activated' sludge sys­

tem was obtained for initial measurement of chemical oxygen demand, bio­

logical solids concentration, and in later experiments, cell protein 

and eel l carbohydrate. . T~roughout th.e duration of the experiment, sus­

pensions of the mixed liquor were obtained for.measurement of the physi­

cal, chemical, and biochemical parameters described above. Also the 

initial optical density was recorded. During each experiment, frequent. 

measurement of optical density permitted construction of a gr.ow,tn·;ctirve 
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which was used, as a, gu,ide, in .selecting .sample times. Starting with the 

next day,,the volum~ of the,mixed liquor-was measured prior to sampling 

and the loss of water due :to'. evaporation was made up to the correct vol-
,+ 

ume with di sti 11 ed water. The pH was 7. 0 ( .... O .15) in a 11 of the systems. 

2. Growth Rate Studies 

In the growth rate. experiments., cells frem the batch reactors were 

i nocu_l ated into flasks {250-ml Erlenmeyer) containing fresh growth 

medium, essential salts (as described earlier), and various concentra­

tions of acetic ac,id a~ the sole, carbon source ,and growth-limiting 

nutrient, 

Seven concentrations of carbon source withtn a range of 60 to 1000 

mg/1 acetic acid were aerated on a shaker {Eberbach, 110 oscillations/ 

mfo), and the experiments were perform.ed com;:.urrently with, experiments 

described above. Each flask was,,inocu]ated with 2.5 ml of cell suspen­

sion from the. batch reactor and minimal growth medium to, a volume of 
, . 

50 ml . The pH of a 11 systems was seven., For a 11 experiments, growth 

of biological solids was, measured by, .optical density,, 

B. Analytical Methods 

1. Biological Solids 

The weight of biological solids was, determined gravimetrically by 

filt~ation of the mixed liquor samples thr0ugh membrane filters {0.45 µ 

pore size, Millipore Filter Corp,, Bedford, Mass.). The following pro­

cedure was emp 1 oyed for the measurement of suspended bio 1 ogi ca 1. solids: 

Filters, were. placed in aluminum pans weighing approximately 1.3 grams. 

The pans were placed in a drying oven for one hour at a temperature 

setting ,of 103°c, and th,en placed in a desiccator for cooling. After· 



17 

coo 1 ing., the pans were weighed o;. Known .volumes cOf mixed 1 i quor were then 

filtered with the aid of a vacuum pump. For samples which were diffi­

cult to filter, a centrifu.ge (Sorvall Superspeed Centrifuge, type SS-lA, 

Ivan Sorvall, Inco) was used to reduce the time of filtration. The 

samples were centrifuged (10,000 rpm).fq:r several minu:tes prior to fil­

tration. The supernatant was carefully. rfi'ltered first; and then the. 

pellet of solids which .was formed was .removed with the aid of a metal 

spatula and placed on the filter. After complete filtration, the fil­

ters were returned to the pans, placed in a drying oven at a temperature 
i 

of 103°C for one hour, cooled in a desiccator~ then weighed to determine 

the biological solids. concentrationo 

2. ChemicaJ Oxygen Demand 

The. COD of the membrane filtrate was determineci in accordance with 

Standard Methods (46) .. Mercuric sulfate. and silver sulfate were used 

for all con determinations. 

3o Protein Content of Biological .Solids 

Protein was measured using. the Folin-Ciocalteu reagent as described 

by Ramanathan, Gaudy, and Cook (47). ·· The an.a lyses were performed. on 

cell suspensions which. were. homogenized by sonic oscillation. The 

standard used was crystalline bovine plasma albumin, Grade A (Calbio­

chem, Los Angeles, California). 

4, Tot~l Carbohydrate Content of Biological Solids 

Carbohydrate was measured, using the anthrone method as outlined by 

Ramanathan, Gaudy and Cook {47} .. Analyses were performeq on aliquots of 

homogenized cell suspensions and the standard used was reagent grade 

glucose, 



, .. , CHAPTER IV 

DATA ANALY~IS· 

A, Cell Yield 

All sludge yield values were determined by calculating the. slope 

of the straight-line plot ~f biological solids versus substrate (COD) 

removed for each long-term batch study,. A statistical analysfa was 

performed on the values for cell yield (Y), maxjmum growth rate (µmax), 

and saturation constant (Ks )o The statistical parameters, sample mean 

(x}, s_tandard deviation {s), coefficient of variance (CV), and 95 per­

cent confidence limit (CL) were calcul.ated from the following mathe-

. matical expressions (48):. 

1. Sample mean (x) 

.. E .X. x = __!_1 
n 

where. x = sample mean 

where 

Ei X; = Xi.+ X2 + • • • + X1 + • • • Xn 

n = total number of observations. 

2. Standard deviation (s) 

s *E~~ : ~r. 
s = standard deviation 

18 

(l) 

(2) 



X • X1, X2. Xn 

x • sample mean 

n = number of samples 

3 .. Coefficient of variance (CV) 

CV ::a 100 ~--
x 

where 

CV~ coefficient of variance 

s = standard deviation. 

x"' sample mean 

4. 95 percent confidence limit (CL) 
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: (3) 

o.95 =P~-( t 0. 05 • ~} ~ µ ~ X + ( t 0•05:.J.n )] (4) 

where 

x = sample mean 

s = standard deviation 

n = total number of observations 

t = PStudent's t" 

µ= population mean 

8
. .G:::tl:!~:~:h exper1 ment, opt 1 ca 1 density vs. time for ea_ch 

initial CO~concentration was plotted on semi-logari-thmic graph paper. 

When. the pop~lation is in exponential growth, this plot .will yield a 

straight line portion, the slope of. which is the exponential growth 

rate constant (µ) in agreement with the. following equation which des­

cribes the increase in cell ma~s during logarithmic_ ·growth of a bacter­

ial cul_ture: 
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dx 
dt = ]J'X (5) 

where Xis the dry weight of cells per unit volume at time,.t, andµ is 

th.e specific growth rate. Integration .of this expression yields the 

growth equation 

(h -1) = lnAX 
µ r At (6) 

The specific growth rate values with the corresponding initial sub­

strate concentrations for each growth system were then plotted accord­

ing to a Lineweaver, Burk representation (this is a graph of 1/µ, 

ordinate vs. 1/S abscissa) .. A curve of be~t fit for this plot is a 

straight line, the slope equaling K/µmax' with the Y ,intercept being 

l/µmax · · 

A plot of µ versus S (Monad plot) was a.lso constructed for each 

growth rate experiment. It has. been.concluded by Monad (20) that· best 

representation of the relationship between specific growth rate,µ, and 

substrate concentration, S, is a rectangular hyperbola in accordance' 

with the equation 

s 
µ = µmax K + s 

s 
(7) 

In this equation, .the maximum growth rate constant (µmax) is 

defined as. that growth rate.at which a further jncrease in the, growth­

limiting :nutrient.has no effect on th.e.specific.growth rate,µ, and Ks' 

the saturation constant, is the substrate concentration at whichµ= 

0.5 µmax· Examination of equation (7) indicates that exponential growth 

does not occur unles.s the. growth-limiting. nutrient is in excess and 

this substrate concentration cqrresponds to µmax· This means that in a 

microbial growth system where substrate molecules are not in excess, the 
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specific growth rate co.nstant .{µ). is so sensitive to substrate conc~n­

tration that a. change in substrate .concentration, due to bacterial 

metabo 1 ism, w.i 11 cause a change in the specific growth rate ( µ). The 

Monad equation .is widely used. by microb,iologists for studies on the 

kinetics of bacter.ial growth, and ha~ also been applied by bioenviron-
' 

mental engineers to the study of . ."steady-state'' .growth of mixed micro­

bial populati.ons for possible use in biological wastewater treatment 

plant design. 

In contrast· to Monad I s theory, Gaudy, Obayashi t and .Gaudy (31 ) 

have shown exponential growth (as ,determined by slope of the linear por­

tion pf a plot of optical density [logarithmic] vs. time on semi.-·· 

logarithmic paper}can exist at substrate levels below ,those needed to 

attain µmax-· They have hypothesized. that ~-· biological cell can control. 

internal concentrations of. substrate, within certain limits set by the 

initial substrate concentration, S0 , so that while the external sub­

strate .concentration may change, the internal substrate concentration. 

remains relati.vely constant and sets the exponential growth rate. 

The.Monad graph was constructed to see how well the data reported 

herein fit the hyperbolic relationship of specific gr.owth rate vs .. 

substrate concentration. All numerical values of maximum growth rate 

(µmax) and the saturation constant (Ks) wer.e calculated from each 

Lineweaver, Burk. p loto 



CHAPTER V 

RESULTS 

The research investigation is concerned·with a kinetic and meta~ 

bolic study.of acetic acid·metabolism·and the effect of substrate con­

centratinn·on exponential ·growth: In section r~ the results during 

substrate removal and endogenous phases for ·twenty long-term once-fed 

batch activated sludge experfments·using acclim~ted natural microbial 

populations of· sewag'e origin·are presented;· In section II, the results 

of cell yield· an_alysfs and· kinetfc-tre&tment ·of data from growth rate 

experiments are shown. In section·rrr, results for endogenous metabolic 

activity and total oxidation of activated sludge mixed microbial pop­

ulations are presented. 

A. Primary Data 

Figures 1-20 show the parameters measured ·during the metabolism of 

acetic acid. 

1. Metabolic Response of Acclimated Natural Microbial Cultures'Growing 

on Acetic Acid (Figures 1-7) 

The substrate utilization patterns for experiments ~-7 (Figures 1-

7) are similar. COD removal and biological sol ids accumulati.on appeared 

to follow the S-shaped patterns typical of most growth experiments .. 

COD removal and solids growth were plotted on semi-logarithmic 

22 



' r .. 
·~ 
v, 
> 
..J 
<( 
z 
<( 

c 
IJ.J 
I­
<( 
(.) 

c 
:!!!: 

I I I I I I I I i l I I 1000 L_ . UNIT A 
~ 1 FILTRATE COD 

800 I I ~ I I I I I I I I I I 

600 I I I \ I I I I I I · I I I I 

I I u 1- .......... ......__r:1, 
400 I ,:1 :,ry- .... 7 . BIOLOGICAL SOLIDS 

200 I I I /' I \. I I ~ I I . I · I I · 1 

2 4 6 168 

TIME, hrs 

Figure l. Metabolic response of an acclimated natural microbial population growing on 
acetic acid .. Experiment No. 1, 

;;: . 

N 
w 



' OI 
E .. 

(/) 

(/) 

> 
..J 
<C z 
<C 
c 
Lu .... 
<C 
u 
0 
z 

I, 

1000 
v----......_ I I I I I I I I I I 

UNIT B 
I I I . I I I I 

800 I I ,·,1 - FILTRATE COD 

600 

400 

I I I IY I I "'--1 -BIOLOGICAL SOLIDS 

200 

. 00 2 4 6 8 24 72 120 168 216 264 312 

TI~,~ 

Figure 2. Metabolic response of an acclimated natural microbial population growing on 
acetic acid - Experiment No. 2. 

N 
~ 



::::::. 
[ .. 
Vl 
Vl 
> 
..J 
<( 
z 
<( 

0 
LI.I ,­
<( 
(.) 

i5 
z 

1000.-----..... ----..... ----..... ----... ----... ----..---...----.-----.----...... ----..... ----..... ----.... 

soo---~~i---~~~ .---FILTRATE COD' UNIT c 11 I 

600 I I I I '\:: I I I I I I I I I I 

400 I I I I I \: ± :::.;..o"""' I - 'i"L.. 1 ' I I 
.---BIOLOGICAL SOLIDS 

200 I . I I ...L.:..,.,-"' I \I.: I I 1·~1----+---+---+-----l,-----1 

2 6 8 10 

TIME, hrs 

Figure 3 .. Metabolic response of an acclimated natural microbial population growing on acetic 
acid - Experiment No. 3. · 

"' 01 



tooo----...-----,.----.,-----,-----r------r----r----,----,-----r-----r----, 

' 
8001 I I fS-, I I I I f ' ~"' • • I · ' I 

UNIT D '1 « FILTRATE COO 

0, 
E .. 

V) 

~ 6001 I I ~ I I ' ~ ' I I I ~ I I I I I 

< u 
0 
z 

400 I I I I I t':'. I r.a.-t t-n BIOLOGICAL SOLIDS 

200 I I I I· P" ' . I I ,., . J " I I :::::::""'! 

OF I I I I I 5 · H I t:1 · t:::::YC:::X I I I '( ::::::;;;:,,;, 
O 2 4 6 8 10 I -· -- --- ··- --· -· · 

TIME, hrs 

Figure 4. Metabolic r~sponse of an acclimated natural microbial population growing on acetic 
acid - Experiment No. 4. 

N 
en 



:::::::. 
C\ 
E .. 

IJ) 

IJ) 

> 
....l 
<( 
z 
<( 

Cl 
w 
I-
<( 
u 
Cl 
z 

1000 

I>= I kl I I I UNIT E 
800 • ·- FILTRATE COD 

600 

400 

I I I I I r:'l I I ~BIOLOGICAL SOLIDS 

200 

O C I I , .- J I I D 11:m:,; r?tzf J I I I 7 2 I 
O 2 4 '6 - ·- • -- - ---

TIME, hrs 

Figure 5. Metabolic response of an acclimated natural microbial population growing .on acetic 
acid - Experiment No. 5. · 

N 
-...J 



:::::::. 
en 
E .. 

V) 

V) 

> _. 
< z 
< 
0 
LL.I ..... 
< . (.) 

0 z 

·-
1000 

UNIT F 

800 ;•· 
I 
l 

: FILTRATE COD 

600 

400 

I I I I I / \ ~ L:.1...-.-· BIOLOGICAL SOLIDS 
200 

o -ii :,t d ">::::Sl J I T J - ::J,1 
0 2 4 6 8 - 10 312 

- TIME, hrs 

Figure 6~ Metabolic response of an accl 1mat~d natural microbial populat_ion _growing on acetic 
ac_id - Experiment No._ 6. 

I'\) 
(X) 



' f .. 
v, -v, 
> 
..J 
<( 
z 
<( 

0 
LLJ 
t-
<( 
(.) -·o 
z 

1000 _ 
UNIT,-G 

I I I I I 1--r-
800 I I "-.& FILTRATE COD 

600 

400 

I I !ii I ~ ~ BIOLOGICAL SOLIDS 

200 

o ,t,<tr:::::: I I . I I~~~, ~x I 
0 4 8 . 12 24 72 120 168 -·. - . - - --

TIME, hrs 
.··;·· 

~ ..; -;: 

Figure 7. Metabol 'ic response of an ,acclimated natutal mitrobi~l population growing pn':ac~tic::. 
acid - Experiment No. 7. · · ·. · 

I\) 
\0 



30 

coordinates·, and distinct exponentiaLphases.,..were· observed Jn all cases. 

The biochemical· efficiency,,:i·.e~ ;"the-percent··substrate removal during 

the· waste. purification :phase' for· the··systems·;-ranged from' 93 to ,egg per­

cent. . The duration':of ·the0 puri fication~"phases··vari ed from 8 to. 12. ~ 

hours. lt can:.be .seen .i-rr:Eigures1 '1:;S:"·.thatmaximum solids accumulation 

occurred :at. time .. of"maximum removal·of·~·the··exogenous substrate.. How­

ever,. i'n Figures·.6 and':7:, ·the 1.:·lowest··amoant'·of"solable organic .matter 

was· observ·ed 1:at:"13•·and,·l4':'.fr:ho.ur.s•, ···respectively, i.e., somewhat after 

the time of ma:x.imum sludge synthesis·~ The percentage of carbon source, 

(as COD) that was .. channelled ·into cellular synthesis, or cell yield, 

for experiments 1-7 (Figures 1;..Z)'varied ·from 37.5 to 50 percent. 

Endogenous oxidation patterns·of the biological solids in the 

activated sludge systems (Figures 1;.,7) were similar. At first, the 

rate of endogenous ·oxtda:tion''proceeded reasonably fast but .1 ater, after 

approximately 120, houri,·approached zero~~ The ~oltds synthesized 

earlier during growth in experiments 1 and 7, did not appear to be as 

readily (totally') utilized. durfog the endogenous phase as in the other . 

experiments,, It':can- be seen from p·;gures ·2 and 5 that almost 11 total 

oxidation 11 of the1.accumwlated·:s0Hds'occarred during the endogenous 

(autodigestion) phase; ·.The· results"shown in Fi'gures 3, 4, and 6 show 

total ·aerobic autodigestion: 0of'·the .. synthesized·sludge mass; The total 

filtrate COD ,remafoing irr experiments :1-7 (Figures 1-7) was relatively 

constant an~~f~low~concentration throughoat·the enttre endogenous 

phase. · Table.· IL·is a summary·'of characteristi'cs ·of acetic acid sys­

tems 1;..7 at the time :of :removal of exogenous substrate .. 



TABLE II 

SUMMARY· OF CHARACiERISTICS OF ACETIC ACID SYSTEMS 1-7 AT THE TIME 
OF REMOVAL-OF EXOGENOUS SUBSTRATE 

Biochemical Sludge Physiological 
Efficiency-_ Synthesis Growth Constants 

Exper. Fig. Time- · Residual Removed _ Total Yield µm:~ Ks 
No~ No,..·(hrs~t- 'mg/l·~ mg/1 % · mg/1 mg/1 Percent hr mg/1 -

1 1 8 43 930 96 420 390 43 
2 2 8 27 959 97 415 367 40 
3 3 12. 5 24 926 97 443 360 38 
4 4 11 11 932 99 395 335 37.5 *0.413 99 
5 5 11 5 923 99 425 370 40 *0.477 99 
6 .. 6 11 69 858 93 440 385 50 *0.366 61 

7 7 9.5 59 846 94 420 380 46 0.980 81.5 

* Not included in statistical analysis .. 

w ...... 



2, Metabolic Response: iand,·B:iochemica:l: Composi·tton-.. of the Bio-mass 

Growing·on Acetic"'Acid:(f'igures 8-20) 

The substrate.-removal .. and·:sludge:·:synthests·patterns for experi-

. ment~·8.;.;20,-(Figures''8;..20}·.·were0;··in·0gene·ra1·;· similar to those observed 

for the previ:ous exper.tmen:ts'~'-' ·rhe· actti/ated"·sladge ··systems exhibited 

bfochemtaal. efficiencies ·trr tbe:crange·'of··so···to·'·99'·percent, and -the 
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1 engths. of .subs:tratEFremoval·:phases 0 varied··from 7·' to 10; 5 hours With . 

the exception :of::e)(peri'mertt 20 (Figure 20), which las;ted 27 hours. Cel 1 

yield values of 35 to -45:7 ·percent were obtatned, in experirnents 8-20 

(Figures 8-20). 

From the data of·Figures 8-20 and Table II, the latter presenting 

a summary of characteristics of acetic acid systems 8-20 at the time of 

removal of exogenous substrate;synthesis of cellular carbohydrate at 

the time of maximum.' removal of exogenous substrate ranged from 3, 0 to 

9,7 percent,of the. accumulated·btologi'cal '·solids. Protein synthesis 

paralleled the acclimated·biological solids curves and amounted to 

41, l to 63 ~ 5 percent ·of~ the :accarnula·ted cell mas.s. 

The aerobic auto.;.;oxidation~of the accumulated biological solids 

fol lowed• patterns ·.similar to: earlier experiments (see Figures 1-7), 

The·rate·of·autodlgestion·was"'fatrly·rapid at first, then gradually. 

approached zero :during prolongedendogenous·aeration conditions. The 

carbohydrate content of·c:the·ceBs remained·reli'ltively low during the 

entire period ··of endogenous ·metaboltsm·; ·· Oxi'dati'on of· protei naceous 

mo 1 ecul es seemed ·to be :the:--main soarce- of endogenous substrate. Exper­

iments 8;;.lQ. 0 (Figures 8;;.;lO) show ·11 total oxictattonu of the sludge mass· 

accumulated during .growth.· Various degrees of aerobic autodigestion of 

sol ids accumulated darfog·the substrate removal phase were observed .in 
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experiments-1 i.;;20··,(P"Tgares l1.;;;20')--. Table- Ill' is a summary of character-: 

istics of ace:tic.actd. systems.--8;..2Q·'at the time of removal of exogenous 

substrate. 

B. Growth Kinetics 

L Cell .Yield 

··.- Figures .21~40,_(experiments·t.;;20)"show·'sludge ·yield values obtained 

by determining: the. sfope:of .a ptot-:of bi'ologtcal solids vs. _substrate 

( COD) removed. On:'each--ftgure·;-the· end···of-the 1 ogari thmic growth phase 

of-the activated sludge mixed ·mtcrobta:l population·.is marked~ This 

point was located .'by generating··,a·growth· curve (a plot of optical den­

sity [109] vs. time) and determintng the··time·at whi'ch the logaritbrn-ic 

grown phase·,for each'·e:xpertment ·(Figures 1;.;2Q) started to end and the 

-declining growtfr·phase·began: · Por· Figures·28-34, and 36-40, data 

points obtained by co~relation of·optical" density, ·sol ids growth, and 

substrate·removal curves .. are·denoted·by a single circle. 

It can be seen from Fi gu.res.· 21~40· (experiments 1-20) that sludge 

yield during the entire period of autocatalytic growth of heterogeneous 

microbial populations metabolizing acetic acid can be considered con­

stant. · Seventy percent of· the experiments (Figures 21-40) show the end 

of the logarithmic. growth phase occurring.'after at least two-thirds of 

the substrate had'· been oxidized·· or· assimnated. Results of stati stica 1 

analysis of the cell yield·values are shown in Table IV. Cell yield 

values for expefiments·l.;;20 (Figures 1.;;20) are listed in Tables II and 

III and are in agreement with values reported in the literature (19)(12). 



Exper. Fig. 
No. No. 

8 8 
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10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
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10 
11 
12 
13 
14 
15 
16 
17 

18 
19 
20 

TABLE III 

SUMMARY OF CHARACTERISTICS OF ACETIC ACID SYSTEMS 8-20 AT TIME OF REMOVAL OF EXOGE~OUS SUBSTRATE . . . 

5Tuage 
Biochemical · Sludge Carbohydrate Sludge Protein Physiological 

COD Efficiency Synthesis Total Total Growth Constants 
As% As% µ K 

Time Residual Removed Total Yield Sludge Sludge max s 
(hrs.) mg/1 mg/1 % mg/1 mg/1 Percent mg/1 Dry Wt. mg/1 Dry Wt. hr-1 mg/1 

8.5 44 866 '. 95 378 , 333 43.5 18 4.7 217 57.4 0.455 70 
7.5 
7.5 
7.0 
7.0 
8.0 
8.5 
8.0 
7.5 

10. 5 

8.0 
8.0 

27.0 

40 
28 
20 
8 

8 
32 _ 

28 
36 
8 

36 
116 

56 

860 
912 
940 
972 

977 
968 
922 
964 
920 
964 
849 
894 

95 
97 
98 
99 

99 
97 
97 
97 
99 

97 
80 
94 

338 
330 
387 
357 
358 
387 
387 
403 
393 
365 
343 
413 

275 
260 
362 
332 
318 

339 
337 
340 
373 
320 
328 
355 

41.7 19 
43.3 14 
45.7 20 
41.2 17 
37.5 35 
37.5 20 
42.0 25 
38.5 16 
39.5 12 
35.0 14 
40.8 14 
41.0 20 

5.7 
4.2 
5. l 

4.7 
9.7 
5.1 
6.4 
3.9 
3.0 
3.8 
4.0 
4.8 

150 
170 
173 
167 
179 
246 
205 
229 
208 

184 
212 
170 

44.3 
51.5 0.518 
44.7 0.715 
46.7 
50.0 0.690 
63.5 0.770 
52.9 
56.8 0.770 
52.9 0.685 
50.4 0.690 
61.8 0.775 
41.l 0.706 
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45 
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140 
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94 
29 
62 
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Figure 32. Cell yield for a heterogeneous microbial population 
growing on acetic acid - Experiment No. 12. 
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growing on acetic acid - Experiment No. 16. 
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growing on acetic acid - Experiment No. 17. 
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TABLE IV 

STATISTICAL SUMMARY OF METABOLIC PARAMETERS 

n Mean 
' 

Cell yield 20 41.1 

µmax 11 0.705 

Ks 11 60 

2. Growth Rate Experiments 

Standard 
Deviation 

.3.53 

o~ 137 

33.7 

Coefficient 
of Variance 

8,6 

19.4 

56.2 

68 

95% CL 

41.1 + . 1. 57 -

0.705 ! 0.09 0 

60 ! 23,8 

Figures 41-69 show the effect of substrate concentration on expo­

nential growth rate(µ). Graphical representation of exponential growth 

rate(µ) substrate concentration data by a rectangular hyperbola (Monod 

plot) and by a double reciprocal straight-line plot (Lineweaver, Burk) 

are presented in Figures 41-62. A representative example of optical 

density (log) vs. time plots for calculation of exponential growth 

rate(µ) is given in Figures 63-69 (experiment 11). The values for the 

physiological growth constants maximum specific growth rate {µmax) and 

saturation constant (Ks) were determined from the Lineweaver, Burk 

plots, and ranged from 0.455 to 0.980 hr-1 and 29 to 140 mg/1, respec­

tively. 

It can be seen from Figures 41-62 that the relationship, a single 

function of decreasing slope, proposed by· Monod·; fits the bulk of the 

data bf µ and S reported herein .. However, in contrast to Mo nod I s 

theory that exponential growth can occur only in the presence of excess 

substrate, Figures 63-69 indicate exponential growth (as determined by 
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the slope of a straight-1.ine plot of opttca·l density [1ogJ vs. time) 

can occur at substrate concentrations below maximum growth ra.te. A 

statistical analysis of maximum growth rate and saturation constant 

values is shown in Table IV. The values of growth parameters for their. 

respective experiments are found in Tables II and III. 

C. Endogenous Metabolism 

Figures 1-20 show the metabolic activity of activated sludge mixed 

populations during prolonged endogenous aeration conditiohs, The 

11 total oxidation-" of solids accumulated during the substrate removal 

phase was observed in many of the batch activated sludge-extended aera-­

tion systeml (see section I). It can be seen in experiments 8, 9; 10, 

13, 14, and 16 (Figures 8, 9, 10, 13,,114, and 16) that all of the pro­

tein synthesized during the substrate removal phase was oxidized during 

endogenous metabolism. Figures 12, 15, 18, and 19 show almost "total 

oxtdation 11 ·of en~ogenous protein during the aerobic auto-oxidative 

phase. Results of experiments 8-20 (Figures 8-20) show carbohydrate 

not to be a primary endogenous reserve material, and consequently not a 

main endogenous carbon source. Figures 1-20 show the residual soluble 

organic.matter to remain relatively constant, and in most experiments, 

concentrations varying between two and ten percent of the theoretical 

COD are observed; Tables V and VI present a summary of sludge charac­

teristics in the endogenous phase for all acetic acid systems. 



Exper. 
No. 

1 

2 

3 

4 

5 

6 

7 

TABLE V 

SUMMARY OF SLUDGE CHARACTERISTICS IN THE ENDOGENOUS PHASE OF 
ACETIC ACID SYSTEMS 1-7 

Sludge 
Final Sxnthesis 

Final As% As % of 
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Fig. Time Cone. Weight Yield Sludge Theoretical 
No. (Hrs.) mg/1 mg/1 Percent Synthesized COD 

1 312 110 80 8.2 20.5 7.5 

2 312 74 26 2.6 7. l 2.5 

3 312 78 0 0 0 0 

4 312 53 0 0 0 0 

5 312 93 38 4. l 8.9 3.6 

6 312 58 3 0.32 0.68 0.28 

7 312 125 85 9.4 22.4 8.0 



TABLE VI 

SUMMARY OF SLUDGE CHARACTERISTICS IN THE ENDOGENOUS PHASE OF ACETIC ACID SYSTEMS 8-20 

Sludge Sludge Carbohidrate 
Final sinthesis Final Content 

Final As % of 
Timet 

As% 
Exper. Fig. Time* Ccinc. Weight Yield As% Sludge Theore.tical Weight Sludge 

No. No. (hrs.) (mg/1) (mg/1) Percent Synthesized COD (hrs.) (mg/1) Dry Wt. 

8 8 328 50 5 0.5 1.5 0.4 280 -· 10 20.0 
9 9 328 58 0 0 0 0 .280 13 22.4. 

10 10 312 60 0 0 0 0 264 9 15.0 
11 11 360 100 75 7.8 20.7 7.0 336 18 18.0 
12 12 360 92 67 6.8 20.1 6.3 336 14 15.2 
13 13 324 80 40 4.0 12.5 3.7 324 8 10.0 
14 14 340 65 17 1.7 5.0 1.6 340 7 10.7 
15 15 312 90 40 4.2 11.8 3.7 312 5 5.5 
16 16 336 150 87 8.7 25.5 8.2 336 9 6.0 
17 17 600 185 165 17.7 44.2 15.5 600 20 10.8 
18 18 600 100 55 5.5 17 .1 5.1 552 10 10.0 
19 19 600 90 75 7.0 22.8 7.0 408 9 10.0 
20 . 20 840 160 102 10. 7 28.7 9.6 316 24 15.0 

* Time at which the experiment was terminated. 
tLast sampling time for determination of cell protein and cell carbohydrate. 

Sludge Protein 
Fina1 Content 

As% 
Weight Sludge 
(mg/1) Dry Wt. 

9 18.0 
29 50.0 
24 40.0 
50 50.0 
37 40.2 
18 22.5 
20 30.7 

'30 33.3 
20 13.3 
50 27.0 
25 25.0 
25 27.7 
71 44.3 

__, 
0 
0 



CHAPTER VI 

DISCUSSION 

A. Metabolism of Acetic Acid fO.r All Activated Sludge-Extended 

Aeration Systems 

The results for twenty long-term once-fed batch experiments on 

activated sludge consisting of acclimated natural microbial populations 

growing on acetic acid as their sole carbon source and growth-limiting 

factor were shown in Figures 1-20. A summary of characteristics for 

all acetic acid systems at time·of removal of exogenous substrate was 

presented in Tables II and III. 

It was observed from semi-logarithmic plots of biological solids 

and optical density obtained during experiments 1-20 that during the 

substrate removal phase, sludge synthesis underwent a period of expon­

ential increase (first-order increasing rate kinetics). In general, 

the same was true for substrate removal. It was also seen that, except 

for experiments 6, 7, and 17 (Figures 6, 7, and 17), times of maximum 

removal of exogenous substrate and maximum cell growth coincided. 

Tables II and III show biochemical efficiencies of the activated 

sludge systems (experiments 1-18 and 20) to be 93 percent or better. 

It was also seen from Tables II and III and Figures 21-40 that cell 

yield, i.e., that portion of organic molecules channelled into synthe­

sis during substrate catabolism varied from 35 to 50 percent. 
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It is noted that the carbohydrate content of these acetic acid­

grown cells was somewhat low. Cognizant of the fact that acetate 

serves as a biosynthetic precursor for synthesis of fatty acids and 

other lipid materials, it is suggested here that lipid material, e.g., 

polyhydroxybuturate, rather than carbohydrate, was a main storage 

product during the metabolism of acetic acid. 

It can be observed from Figures 1-20 and Tables V and VI that 

under prolonged endogenous aeration, "total oxidation" of an accumulated 

sludge mass grown on the low molecular weight organic compound acetic 

acid is definitely possible. During the 11 endogenous respiration 11 

phase, low concentrations of residual soluble organic matter were 

observed along with high utilization of proteinaceous material. This 

phase is discussed extensively in section C. 

B. Growth Kinetics 

1. Cell Yield 

The results seen in Figures 21-40 (experiments 1-20) provide addi­

tional research data which confirms the concept that cell yield can be 

considered constant during the entire course of autocatalytic growth. 

It was seen (Figures 21-40) that cell yield calculated at the end of 

the substrate removal phase was essentially the same as cell yield cal­

culated from the slope of a straight line function of biological solids 

vs. substrate (COD) removed during the substrate removal phase. Thus, 

sludge yields calculated in the usual manner (end of removal phase) 

can be validly employed. 

The overall results for cell yield analysis (Tables II, III, IV, 

and Figures 21-40) for the acclimated mixed microbial populations 
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utilhing a low molecular weight non .. carbohydrate compound show a lower 

portion of the theoretical COD to be used for assimil~tion or sludge· 

synthesis than carbohydrates such as glucose (see literature review for. 

carbohydrate values) •. While there was considerable variation in cell. 

yield, the lower value was 35 percent, and the highest, 50 percent, .it 

is emphasiied that the coefficient of variance from the mean of 41.l 

was only 8.6. When one compares this statistic to the coefficient of 

variance of 20.l for the mean value for glucose of 61.9 percent OB), 

it is readily appreciated that the Y values for acetic acid were more 

closely grouped around the mean. 

It has been proposed that differences in cell yield for heterogen­

eous microbial populations metabolizing an exogenous substrate under 

constant experimental conditions are due mainly to ecological va,rtance 

of the population (49). The research data herein (Tables II, IlI,IV, 

and Figures 21-40) werf:l obtained by employing. a constant -methodology. 

and a,n identical experimental technique for each of the batch activated 

s.ludge-extended aeration systems and growth rate experiments. The only 

difference in the experiments was that introduced by variation in the 

species contained in the sewage seeds employed in each experiment. The 

fact that variations in cell yield were observed is attributable to 

differences in species predominance. Furthermore, the fact that the 

variance in ~ell yield· for those randomly selected natural populations 

was considerably less when grown on acetic acid than when grown on glu­

cose, would seem to be a manifestation of greater selectivity of-acetic 

acid·. compared to glucose •. That is, it would be expected that glucose 

could serve as growth substrate for a wider variety of micr~organis111s. 

Thus, because of greater diversity in predominating species in any 
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given experiment there would be a greater diversity in yield values .. 

Regarding the expected greater degree of species selectivity 

exerted by acetic acid, it is known that for microorganisms utilizing 

acetic acid as growth substrate, the inducement of the two adaptive 

enzymes of the glyoxalate cycle, malate synthatase and isocitratase, 

must take place (50). It is suggested that this rather specialized 

genetic capability is possessed by far fewer species than those capable 

of metabolizing simple carbohydrates such as the hexoses. 

2. Growth Rate Experiments 

As was observed from Figures 41-62, the major portion of growth 

rate data fit the hyperbolic function proposed by Monad for describing 

the relationship between specific growth rate(µ) and substrate concen­

tration. Figures 63-69 show a representative set of optical density 

(logarithmic) vs. time curves of the type constructed for.each growth 

experiment for determination of specific growth rate (µ). From Figures 

63-69, as well as all of the other optical density (logarithmic) vs. 

time curves, it was observed and therefore necessarily concluded that 

exponential growth (described by the slope of a linear portion of a 

plot of optical density ~ogarithmic] vs. time on semi-logarithmic 

graph paper) occurred at substrate concentrations below maximum growth 

rate. These results corroborate the finding and are in accord with the 

hypotheses presented ih a recent article by Gaudy, Obayashi, and Gaudy 

(31). They are contrary to Monad's empirical formu·la (equation 7} 

which indicates that exponential growth occurs only in the presence of 

excess substrate concentration. 

It can be seen (Tables II, III, IV, and Figures 41-62) that an 

average maximum growth rate value of 0.705 hr-l for heterogeneous 
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populations growing on acetic acid was obtained. This value is slightly 

higher than average µmax values, e.g., 0.53 hr~1 reported for carbohy­

drate like glucose (51 ). It is suggested here that slightly higher 

values for maximum growth rate occurred because of the lower degree of 

diversityofspecies in the population due to the higher degree of selec­

tivity of acetic acid. The mean value for .the accompanying saturation 

constant (Ks) for acetic acid was 60 mg/1 and is slightly .lower than 

the range of 75-150 mg/1 reporteq for glucose. 

C. Endogenou~Metabolism 

It was observed in Tables V and VI and in Figures 1-20 that the 

total aerobic auto-oxidation of an accumulated sludge mass developed 

during the substrate removal phase by heterogeneous microorganisms of 

sewage origin growing on acetic acid as so 1 e carbon source was defi n- . 

itely possible. These results are at variance with those reported by 

Symons and McKinney (35). They concluded that 11 total oxidation 11 of 

acetic acid is not possible, due to accumulation of a residual non­

biodegradable organic material during the endogenous oxidation phase 

which they identified as polysaccharide. In a recent article, 

Obayashi and Gaudy.{43) have shown that bacterial. ext.racell ul ar hetero­

polysaccharide does not constitute a biologically inert fraction. 

The net accumulations of biological solids were shown in Tables V 

and VI and as a measure of total oxidizability .values are expressed as 

percent theoretical COD and percent sludge synthesized. It was 

seen that in many of the batch activated sludge-extended aeration sys-

terns, values for 11 total oxidation 11 were much lower than values pre-

viously reported by earlier research workers (52 )(40 )(39). 

It was seen (Figures 8-20, Tables III, V, VI) that during the 
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substrate removal phase, the cells did not synthesize large amounts of 

cellular carbohydrate as a primary endogenous storage product. The 

percent carbohydrate content of the cells remained relatively low and 

fairly constant through the entire period of endogenous metabolism. 

There was no buildup in carbohydrate content {percent) of the sludge 

during endogenous metab6lism, offering further evidence that carbohydrate 

material is not biologically inert. 

The primary cell storage component and endogenous carbon source 

synthesized by the bio-mass was protein (Tables II and lI I), Si nee pro­

tein constituted the energy 11 storage 11 product and endogenous substrate, 

the rapid utilization and extensive oxidation of proteinaceous mole­

cules at the beginning of endogenous metabolism was observed {Figures 

8-20). For many of the batch-activated sludge-extended aeration sys­

tems, a high degree of "total oxidation" of synthesized protein 

occurred during extended periods of endogenous respiration (Figures 8-

20). 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

A. Long-term Grice-fed Batch Activated Sludge-Extended Aeration Studies 

Using Acclimated Natural Microbial Populations of Sewage Origin Growing 

on Acetic Acid as Sole Carbon Source 

The present research investigation was a kinetic and metabolic 

study of acetic acid metabolism consisting of twenty long-term experi­

ments covering both substrate removal and endogenous phases. Based upon 

this study, the following conclusions are drawn: 

1. During the substrate removal phase, both substrate removal and 

sludge synthesis underwent a period of first-order increasing rate kin­

etics. 

2. A mean cell yield for acetic acid (a two-carbon compound) of 

41 ,l percent was determined, and hence it is noted that it was lower 

than values reported for carbohydrates (hexoses). 

3. Sludge yield can be considered constant for heterogeneous 

microorganisms during the entire course of autocatalytic growth and can 

be accurately determined by calculating the slope of the straight-line 

plot of biological solids vs. substrate (COD) removed. 

4. Differences in cell yield values for heterogeneous populations 

grown under identical experimental conditions result from ecological 

variance of the populations. The degree of variance in cell yield 
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values is expected to be lower for substrates which are expected to 

exert a greater selective pressure on species variance. Thus, the 
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values for Y are more closely grouped around the mean for acetic acid 

than for glucose. 

5. The 11 total oxidation 11 of an accumulated sludge mass developed 

from the metabolism of acetic acid is definitely possible. Forty per­

cent of the batch-activated sludge-extended aeration systems exhibited 

"tota 1 autodi gestion ,II 

6, Synthesis of protein was the primary cellular product and, 

during endogenous metabolism, served as primary endogenous carbon source. 

B. Growth Kinetics 

Growth rate experiments were conducted to determine the effect of 

substrate concentration on specific growth rate. Based upon this study, 

the following conclusions are drawn: 

1. Exponential growth (as described by the slope of a linear por­

tion of a plot of optical density [logarithmic] vs. time on semi­

logarithmic paper) can exist at substrate levels below those needed to 

attain µmax· 

2. The hyperbolic function suggested by Monad for relating 

specific growth rate to substrate concentration adequately represents 

the relationship between exponential growth rate and initial substrate 

concentration. 



CHAPTER VI II 

SUGGESTIONS FOR FUTURE WORK 

Further studies of the kinetic behavior and metabolic patterns of. 

sludge oxidation during endogenous metabolism. 

A basal theoretical premise of ·the "total oxidation 11 theory is that 

if total auto-oxidation occurs, then the accumulated amount of o2 uptake 

should approximate the amount of biological organic matter available to 

the microorganisms, i.e., the theoretical o2 demand is approximately 

equal to the theoretical COD. Confirmation of this theoretical premise 

can be obtained by operating a batch-activated sludge-extended aeration. 

system and measuring oxygen uptake, biological solids, chemical oxygen 

demand, ammonia and nitrate nitrogen, and determinations of energy, 

materi a 1 s, and nitrogen balances to ensure assessment of recovery of , 

the carbon. 

A positive result from this experiment should provide further 

proof as to the validity of the "total oxidation" theory, and should 

yield additional information about oxygen utiliza.tion and metabolic 

mechanisms during endogenous metabolism. 
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