1,611 research outputs found

    Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams

    Full text link
    Exposure of dissolved organic matter (DOM) to sunlight can increase or decrease the fraction that is biodegradable (BDOM), but conceptual models fail to explain this dichotomy. We investigated the effect of sunlight exposure on BDOM, addressing three knowledge gaps: (1) how fractions of DOM overlap in their susceptibility to degradation by sunlight and microbes, (2) how the net effect of sunlight on BDOM changes with photon dose, and (3) how rates of DOM photodegradation and biodegradation compare in a stream. Stream waters were exposed to sunlight, and then fed through bioreactors designed to separate labile and semi‐labile pools within BDOM. The net effects of photodegradation on DOM biodegradability, while generally positive, represented the balance between photochemical production and removal of BDOM that was mediated by photon dose. By using sunlight exposure times representative of sunlight exposures in a headwater stream and bioreactors colonized with natural communities and scaled to whole‐stream dynamics, we were able to relate our laboratory findings to the stream. The impact of sunlight exposure on rates of DOM biodegradation in streams was calculated using rates of light absorption by chromophoric DOM, apparent quantum yields for photomineralization and photochemical alteration of BDOM, and mass transfer coefficients for labile and semi‐labile DOM. Rates of photochemical alteration of labile DOM were an order of magnitude lower than rates of biodegradation of labile DOM, but for semi‐labile DOM, these rates were similar, suggesting that sunlight plays a substantial role in the fate of semi‐labile DOM in streams.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153758/1/lno11244.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153758/2/lno11244_am.pd

    Spatial Variability in Streambed Microbial Community Structure across Two Watersheds

    Get PDF
    Both spatial and temporal variability are key attributes of sedimentary microbial communities, and while spatial effects on beta-diversity appear to dominate at larger distances, the character of spatial variability at finer scales remains poorly understood, especially for headwater stream communities. We investigated patterns of microbial community structure (MCS) in biofilms attached to streambed sediments from two watersheds across spatial scales spanning ,1 m within a single stream to several hundred kilometers between watersheds. Analyses of phospholipid fatty acid (PLFA) profiles indicated that the variations in MCS were driven by increases in the relative abundance of microeukaryotic photoautotrophs and their contribution to total microbial biomass. Furthermore, streams within watersheds had similar MCS, underscoring watershed-level controls of mi- crobial communities. Moreover, bacterial community structure assayed as either PCR-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints or PLFA profiles edited to remove microeukaryotes indicated a distinct watershed-level biogeography. No distinct stream order-level distributions were identified, although DGGE analyses clearly indicated that there was greater variability in community structure among 1st-order streams than among 2nd- and 3rd-order streams. Longitudinal gradients in microbial biomass and structure showed that the greatest variations were associated with 1st-order streams within a watershed, and 68% of the variation in total microbial biomass was explained by sediment atomic carbon-to-nitrogen ratio (C:N ratio), percent carbon, sediment surface area, and per- cent water content. This study confirms a distinct microbial biogeography for headwater stream communities driven by environmental heterogeneity across distant watersheds and suggests that eukaryotic photoautotrophs play a key role in structuring bacterial communities on streambed sediments

    A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream

    Get PDF
    The bioreactivity or susceptibility of dissolved organic matter (DOM) to microbial degradation in streams and rivers is of critical importance to global change studies, but a comprehensive understanding of DOM bioreactivity has been elusive due, in part, to the stunningly diverse assemblages of organic molecules within DOM. We approach this problem by employing a range of techniques to characterize DOM as it flows through biofilm reactors: dissolved organic carbon (DOC) concentrations, excitation emission matrix spectroscopy (EEMs), and ultrahigh resolution mass spectrometry. The EEMs and mass spectral data were analyzed using a combination of multivariate statistical approaches. We found that 45% of stream water DOC was biodegraded by microorganisms, including 31–45% of the humic DOC. This bioreactive DOM separated into two different groups: (1) H/C centered at 1.5 with O/C 0.1–0.5 or (2) low H/C of 0.5–1.0 spanning O/C 0.2–0.7 that were positively correlated (Spearman ranking) with chromophoric and fluorescent DOM (CDOM and FDOM, respectively). DOM that was more recalcitrant and resistant to microbial degradation aligned tightly in the center of the van Krevelen space (H/C 1.0–1.5, O/C 0.25–0.6) and negatively correlated (Spearman ranking) with CDOM and FDOM. These findings were supported further by principal component analysis and 2‐D correlation analysis of the relative magnitudes of the mass spectral peaks assigned to molecular formulas. This study demonstrates that our approach of processing stream water through bioreactors followed by EEMs and FTICR‐MS analyses, in combination with multivariate statistical analysis, allows for precise, robust characterization of compound bioreactivity and associated molecular level composition. Key Points Humic DOM is susceptible to microbial degradation along with peptide‐like DOM Labile DOM can be distinguished from recalcitrant DOM in van Krevelen space EEMs and FTICR‐MS chemically characterize bioreactive and recalcitrant DOMPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108612/1/jgrg20256.pd

    A Coupled Geochemical and Biogeochemical Approach to Characterize the Bioreactivity of Dissolved Organic Matter From a Headwater Stream

    Get PDF
    The bioreactivity or susceptibility of dissolved organic matter (DOM) to microbial degradation in streams and rivers is of critical importance to global change studies, but a comprehensive understanding of DOM bioreactivity has been elusive due, in part, to the stunningly diverse assemblages of organic molecules within DOM. We approach this problem by employing a range of techniques to characterize DOM as it flows through biofilm reactors: dissolved organic carbon (DOC) concentrations, excitation emission matrix spectroscopy (EEMs), and ultrahigh resolution mass spectrometry. The EEMs and mass spectral data were analyzed using a combination of multivariate statistical approaches. We found that 45% of stream water DOC was biodegraded by microorganisms, including 31-45% of the humic DOC. This bioreactive DOM separated into two different groups: (1) H/C centered at 1.5 with O/C 0.1-0.5 or (2) low H/C of 0.5-1.0 spanning O/C 0.2-0.7 that were positively correlated (Spearman ranking) with chromophoric and fluorescent DOM (CDOM and FDOM, respectively). DOM that was more recalcitrant and resistant to microbial degradation aligned tightly in the center of the van Krevelen space (H/C 1.0-1.5, O/C 0.25-0.6) and negatively correlated (Spearman ranking) with CDOM and FDOM. These findings were supported further by principal component analysis and 2-D correlation analysis of the relative magnitudes of the mass spectral peaks assigned to molecular formulas. This study demonstrates that our approach of processing stream water through bioreactors followed by EEMs and FTICR-MS analyses, in combination with multivariate statistical analysis, allows for precise, robust characterization of compound bioreactivity and associated molecular level composition

    Detecting Determinism in High Dimensional Chaotic Systems

    Full text link
    A method based upon the statistical evaluation of the differentiability of the measure along the trajectory is used to identify in high dimensional systems. The results show that the method is suitable for discriminating stochastic from deterministic systems even if the dimension of the latter is as high as 13. The method is shown to succeed in identifying determinism in electro-encephalogram signals simulated by means of a high dimensional system.Comment: 8 pages (RevTeX 3 style), 5 EPS figures, submitted to Phys. Rev. E (25 apr 2001

    Using Topological Statistics to Detect Determinism in Time Series

    Full text link
    Statistical differentiability of the measure along the reconstructed trajectory is a good candidate to quantify determinism in time series. The procedure is based upon a formula that explicitly shows the sensitivity of the measure to stochasticity. Numerical results for partially surrogated time series and series derived from several stochastic models, illustrate the usefulness of the method proposed here. The method is shown to work also for high--dimensional systems and experimental time seriesComment: 23 RevTeX pages, 14 eps figures. To appear in Physical Review

    Manacled to Identity: Cosmopolitanism, Class, and ‘The Culture Concept’ in Stephen Crane

    Get PDF
    This article begins with a close reading of Stephen Crane’s short story ‘Manacled’ from 1900, which situates this rarely considered short work within the context of contemporary debates about realism. I then proceed to argue that many of the debates raised by the tale have an afterlife in our own era of American literary studies, which has frequently focused on questions of ‘identity’ and ‘culture’ in its reading of realism and naturalism to the exclusion of the importance of cosmopolitan discourses of diffusion and exchange across national borders. I then offer a brief reading of Crane’s novel George’s Mother, which follows Walter Benn Michaels in suggesting that the recent critical attention paid to particularities of cultural difference in American studies have come to conflate ideas of class and social position with ideas of culture in ways that have ultimately obscured the presence of genuine historical inequalities in US society. In order to challenge this critical commonplace, I situate Crane’s work within a history of transatlantic cosmopolitanism associated with the ideas of Franz Boas and Matthew Arnold to demonstrate the ways in which Crane’s narratives sought out an experience of the universal within their treatments of the particular

    Cosmological Implications of Dynamical Supersymmetry Breaking

    Full text link
    We provide a taxonomy of dynamical supersymmetry breaking theories, and discuss the cosmological implications of the various types of models. Models in which supersymmetry breaking is produced by chiral superfields which only have interactions of gravitational strength (\eg\ string theory moduli) are inconsistent with standard big bang nucleosynthesis unless the gravitino mass is greater than \CO(3) \times 10^4 GeV. This problem cannot be solved by inflation. Models in which supersymmetry is dynamically broken by renormalizable interactions in flat space have no such cosmological problems. Supersymmetry can be broken either in a hidden or the visible sector. However hidden sector models suffer from several naturalness problems and have difficulties in producing an acceptably large gluino mass.Comment: 24 pages (uses harvmac) UCSD/PTH 93-26, RU-3

    Depletion potential in hard-sphere mixtures: theory and applications

    Full text link
    We present a versatile density functional approach (DFT) for calculating the depletion potential in general fluid mixtures. In contrast to brute force DFT, our approach requires only the equilibrium density profile of the small particles {\em before} the big (test) particle is inserted. For a big particle near a planar wall or a cylinder or another fixed big particle the relevant density profiles are functions of a single variable, which avoids the numerical complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures. By investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-known Derjaguin approximation for hard-sphere mixtures and argue that this fails. We provide an accurate parametrization of the depletion potential in hard-sphere fluids which should be useful for effective Hamiltonian studies of phase behavior and colloid structure
    corecore