151 research outputs found

    Diagnosing Causes of Water Scarcity in Complex Water Resources Systems and Identifying Risk Management Actions

    Get PDF
    From the water management perspective, water scarcity is an unacceptable risk of facing water shortages to serve water demands in the near future. Water scarcity may be temporary and related to drought conditions or other accidental situation, or may be permanent and due to deeper causes such as excessive demand growth, lack of infrastructure for water storage or transport, or constraints in water management. Diagnosing the causes of water scarcity in complex water resources systems is a precondition to adopt effective drought risk management actions. In this paper we present four indices which have been developed to evaluate water scarcity. We propose a methodology for interpretation of index values that can lead to conclusions about the reliability and vulnerability of systems to water scarcity, as well as to diagnose their possible causes and to propose solutions. The described methodology was applied to the Ebro river basin, identifying existing and expected problems and possible solutions. System diagnostics, based exclusively on the analysis of index values, were compared with the known reality as perceived by system managers, validating the conclusions in all case

    Water resource vulnerability: simulation and optimisation models

    No full text
    Approaches to adaptation to a changing climate in water resource planning have relied on both simulation and optimisation models. Simulation models project the impacts of climate change on water system performance while optimisation models show the optimal system performance under climate change conditions. This study uses two water resource models to analyse a water resource system in Sussex (south-east England) under climatic and socio-economic uncertainty. Overall, the simulation and optimisation models show structural model uncertainty. The simulation model highlights potential vulnerability in current operational practice while the optimisation model shows that the current system could be vulnerable to climate change and demand growth even under the best case scenario. The integrated scenarios in this study combine both types, including climate scenarios from four different climate products over the time periods of 2020s, 2030s and 2050s and socio-economic scenarios represented by different demand profiles. Our results show that water demand quickly becomes a controlling factor once it increases by more than 35% from the 2007 baseline level. Both models demonstrate a gradual increasing risk of supply deficit in the 2020s and the 2030s. Water deficit risks vary widely in the 2050s and are highly dependent on the socioeconomic scenarios

    Performance and Consistency of Indicator Groups in Two Biodiversity Hotspots

    Get PDF
    In a world limited by data availability and limited funds for conservation, scientists and practitioners must use indicator groups to define spatial conservation priorities. Several studies have evaluated the effectiveness of indicator groups, but still little is known about the consistency in performance of these groups in different regions, which would allow their a priori selection.We systematically examined the effectiveness and the consistency of nine indicator groups in representing mammal species in two top-ranked Biodiversity Hotspots (BH): the Brazilian Cerrado and the Atlantic Forest. To test for group effectiveness we first found the best sets of sites able to maximize the representation of each indicator group in the BH and then calculated the average representation of different target species by the indicator groups in the BH. We considered consistent indicator groups whose representation of target species was not statistically different between BH. We called effective those groups that outperformed the target-species representation achieved by random sets of species. Effective indicator groups required the selection of less than 2% of the BH area for representing target species. Restricted-range species were the most effective indicators for the representation of all mammal diversity as well as target species. It was also the only group with high consistency.We show that several indicator groups could be applied as shortcuts for representing mammal species in the Cerrado and the Atlantic Forest to develop conservation plans, however, only restricted-range species consistently held as the most effective indicator group for such a task. This group is of particular importance in conservation planning as it captures high diversity of endemic and endangered species

    Limitations of Water Resources Infrastructure for Reducing Community Vulnerabilities to Extremes and Uncertainty of Flood and Drought

    Get PDF
    Debate and deliberation surrounding climate change has shifted from mitigation toward adaptation, with much of the adaptation focus centered on adaptive practices, and infrastructure development. However, there is little research assessing expected impacts, potential benefits, and design challenges that exist for reducing vulnerability to expected climate impacts. The uncertainty of design requirements and associated government policies, and social structures that reflect observed and projected changes in the intensity, duration, and frequency of water-related climate events leaves communities vulnerable to the negative impacts of potential flood and drought. The results of international research into how agricultural infrastructure features in current and planned adaptive capacity of rural communities in Argentina, Canada, and Colombia indicate that extreme hydroclimatic events, as well as climate variability and unpredictability are important for understanding and responding to community vulnerability. The research outcomes clearly identify the need to deliberately plan, coordinate, and implement infrastructures that support community resiliency.Fil: McMartin, Dena W.. University of Regina; CanadáFil: Hernani Merino, Bruno H.. University of Regina; CanadáFil: Bonsal, Barrie. Environment Canada; CanadáFil: Hurlbert, Margot. University of Regina; CanadáFil: Villalba, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Cientifícas y Tecnológicas; ArgentinaFil: Ocampo, Olga L.. Universidad Autónoma de Manizales; ColombiaFil: Upegui, Jorge Julián Vélez. Universidad Nacional de Colombia; ColombiaFil: Poveda, Germán. Universidad Nacional de Colombia; ColombiaFil: Sauchyn, David J.. University of Regina; Canad

    Maternal educational level and risk of gestational hypertension: the Generation R Study.

    Get PDF
    We examined whether maternal educational level as an indicator of socioeconomic status is associated with gestational hypertension. We also examined the extent to which the effect of education is mediated by maternal substance use (that is smoking, alcohol consumption and illegal drug use), pre-existing diabetes, anthropometrics (that is height and body mass index (BMI)) and blood pressure at enrolment. This was studied in 3262 Dutch pregnant women participating in the Generation R Study, a population-based cohort study. Level of maternal education was established by questionnaire at enrolment, and categorized into high, mid-high, mid-low and low. Diagnosis of gestational hypertension was retrieved from medical records using standard criteria. Odds ratios (OR) of gestational hypertension for educational levels were calculated, adjusted for potential confounders and additionally adjusted for potential mediators. Adjusted for age and gravidity, women with mid-low (OR: 1.52; 95% CI: 1.02, 2.27) and low education (OR: 1.30; 95% CI: 0.80, 2.12) had a higher risk of gestational hypertension than women with high education. Additional adjustment for substance use, pre-existing diabetes, anthropometrics and blood pressure at enrolment attenuated these ORs to 1.09 (95% CI: 0.70, 1.69) and 0.89 (95% CI: 0.50, 1.58), respectively. These attenuations were largely due to the effects of BMI and blood pressure at enrolment. Women with relatively low educational levels have a higher risk of gestational hypertension, which is largely due to higher BMI and blood pressure levels from early pregnancy. The higher risk of gestational hypertension in these women is probably caused by pre-existing hypertensive tendencies that manifested themselves during pregnancy

    Index-Based Cost-Effectiveness Analysis vs. Least-Cost River Basin Optimization Model: Comparison in the Selection of a Programme of Measures at the River Basin Scale

    Full text link
    Increasing water scarcity challenges conventional approaches to managing water resources. More holistic tools and methods are required to support the integrated planning and management of fresh water resources at the river basin level. This paper compares an index-based cost-effectiveness analysis (IBCEA) with a least-cost river basin optimization model (LCRBOM). Both methods are applied to a real case study to design a cost-effective portfolio of water demand and supply management measures that ensures compliance with water supply and environmental targets. The IBCEA is a common approach to select programmes of measures in the implementation of the EU Water Framework Directive. We describe its limitations in finding a least-cost solution at the river basin level and highlight the benefits from implementing a LCRBOM. Both methods are compared in a real case study, the Orb river basin, in the south of France. The performances of the programmes of measures selected by the two methods are compared for the same annual equivalent cost. By ignoring the spatial and temporal variability of water availability and water demands in the river basin and the interconnection among its elements, the aggregated approach used in the standard IBCEA can miss more cost-effective solutions at the river basin scale.This paper is based on work conducted as part of several projects over more than 6 years. It benefited from the financial and technical support of the Agence de l'Eau Rhone Mediteranee et Corse; Conseil General de l'Herault; Conseil Regional du Languedoc Roussillon et ONEMA. Funding was partly provided by the IMPADAPT project /CGL2013-48424-C2-1-R) from the Spanish ministry MINECO (Ministerio de Economia y Competitividad) and European FEDER funds. Corentin Girard is supported by a grant from the University Lecturer Training Programme (FPU12/03803) of the Ministry of Education, Culture and Sports of Spain. We are very grateful to Y. Caballero (BRGM), S. Chazot (BRLi), E. Vier and F. Aigoui (GINGERGROUP) and L. Rippert and his team from the SMVOL for their help during the project and for the data provided. We thank as well the two anonymous reviewers, the Associated Editor and Editor-in-Chief of Water Resources Management, for their useful and encouraging comments during the review process.Girard-Martin, CDP.; Rinaudo, J.; Pulido-Velazquez, M. (2015). Index-Based Cost-Effectiveness Analysis vs. Least-Cost River Basin Optimization Model: Comparison in the Selection of a Programme of Measures at the River Basin Scale. Water Resources Management. 29:4129-4155. https://doi.org/10.1007/s11269-015-1049-0S4129415529ACTEON (2011) Research report on the use of cost-effectiveness analysis in regard to the European water framework directive. Acteon PublishingAulong S, Bouzit M, Dörfliger N (2009) Cost–effectiveness analysis of water management measures in two river basins of Jordan and Lebanon. Water Resour Manag 23(4):731–753Balana BB, Vinten A, Slee B (2011) A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: key issues, methods, and applications. Ecol Econ 70(6):1021–1031Berbel J, Martin-Ortega J, MESA P (2011) A cost-effectiveness analysis of water-saving measures for the water framework directive: the case of the Guadalquivir river basin in southern Spain. Water Resour Manag 25(2):623–640Brouwer R, Hofkes M (2008) Integrated hydro-economic modelling: approaches, key issues and future research directions. Ecol Econ 66(1):16–22. doi: 10.1016/j.ecolecon.2008.02.009Caballero Y, Girard C (2012) Impact du changement climatique sur la ressource en eau du bassin versant de l’Orb. Rapport BRGM/RP-61319-FR. 40 p., 16 ill. (In French) http://infoterre.brgm.fr/rapports/RP-61319-FR.pdfCastelletti A, Soncini-Sessa R (2006) A procedural approach to strengthening integration and participation in water resource planning. Environ Model Softw 21:1455–1470Chazot S (2011) Perspectives d’evolution de la gestion des volumes stockes dans le barrage des Monts d’Orb. Rapport final, Novembre 2011. BRL Ingenierie. (in French) http://www.vallees-orb-libron.fr/wpcontent/ uploads/2012/12/etude-gestion-Monts-Orb-Rapport-V16.pdfCGP (Commissariat Général du Plan) (2005) Révision du Taux d’Actualisation des Investissements Publics, Rapport du groupe d’experts présidé par Daniel Lebègue, ParisDe Roo A, Burek P, Gentile A, Udias A, Bouraoui F, Aloe A, Bianchi A, La Notte A, Kuik O, Elorza Tenreiro J, Vandecasteele I, Mubareka S, Baranzelli C, Van Der Perk M, Lavalle C, Bidoglio G (2012) A multi-criteria optimisation of scenarios for the protection of water resources in Europe, Support to the EU Blueprint to Safeguard Europe’s Waters, JRC Scientific and policy report, European Commission. http://publications.jrc.ec.europa.eu/repository/handle/111111111/26672Dehnhardt A (2014) The influence of interests and beliefs on the use of environmental cost–benefit analysis in water policy: the case of German policy-makers. Env Pol Gov 24:391–404. doi: 10.1002/eet.1656EC (European Commission) (2000) Directive 2000/60/EC of the European parliament and of the council, of 23 October 2000, establishing a framework for community action in the field of water policy. Off J Eur Econ L 327/1, 22.12.2000. http://europa.eu.int/comm/environment/water/water-framework/index_en.htmlEC (European Commission) (2007) Addressing the challenge of water scarcity and droughts in the European Union. Communication from the Commission to the Council and the European Parliament, COM(2007) 414, BrusselsEC (European Commission) (2012) A Blueprint to Safeguard Europe’s Water Resources, European Commission, Brussels, 14.11.2012, COM(2012) 673 finalEEA (European Environment Agency) (2012) European waters - assessment of status and pressures, EEA Report No 8/2012, EEA Copenhagen, 2012 http://www.eea.europa.eu/publications/european-waters-assessment-2012EEA (European Environment Agency), 2012b. Towards efficient use of water resources in Europe, EEA Report No 1/2012, EEA Copenhagen, 2012 http://www.eea.europa.eu/publications/towards-efficient-use-of-waterEl Geriani AM, Essamin O AM, Gijsbers PJA, Loucks DP (1998) Cost-effectiveness analyses of Libya’s water supply system. J Water Resour Plann Manage 124:320–329Garber AM, Phelps CE (1997) Economic foundations of cost-effectiveness analysis. J Health Econ 16:1–31Gerasidi A, Katsiardi P, Papaefstathiou N, Manoli E, Assimacopoulos D (2003) Cost-effectiveness analysis for water management in the island of Paros, Greece. 8th International Conference on Environmental Science and Technology. Lemnos Island, Greece, 8–10 September 2003Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207Girard C, Rinaudo JD, Pulido-Velazquez M, Caballero Y (2015) An interdisciplinary modelling framework for selecting adaptation measures at the river basin scale in a global change scenario. Environ Model Softw 69:42–54. doi: 10.1016/j.envsoft.2015.02.023Girard C, Pulido-Velazquez M, Rinaudo J-D, and Caballero, Y, in press, Integrating top-down and bottom-up approaches to design global change adaptation at the river basin scale (in press, doi: 10.1016/j.gloenvcha.2015.07.002 )Griffin RC (1998) The fundamental principles of cost-benefit analysis. Water Resour Res 34(8):2063–2071. doi: 10.1029/98WR01335EU-WFD , 2000Harou JJ, Pulido-Velazquez M, Rosenberg DE, Medellín-Azuara J, Lund JR, Howitt RE (2009) Hydro-economic models: concepts, design, applications, and future prospects. J Hydrol 375:627–643Hashimoto T, Stedinger JR, Loucks DP (1982) Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour Res 18:14–20Heinz I, Pulido-Velazquez M, Lund JR, Andreu J (2007) Hydro-economic modelling in river basin management: Implications and applications for the European water framework directive. Water Resour Manag 21:1103–1125Hoang T, Maton L, Caballero Y, Rinaudo J-D (2012) Impact du changement climatique sur le besoin en eau d’irrigation dans l’Ouest de l’H erault. Rapport BRGM RP-61311-FR. 36 pp (in French). http://infoterre.brgm.fr/rapports/RP-61311-FR.pdfInterwies E, Kraemer A, Kranz N, Görlach B, Dworak T (2004) Basic principles for selecting the most cost-effective combinations of measures for inclusion in the programme of measures as described in Article 11 of the Water Framework Directive-Handbook, Research Report 202 21 210 UBA-FB 000563/E. Federal Environmental Agency, BerlinInterwies E, Görlach B, Strosser P, Ozdemiroglu E, Brouwer R (2005) The case for valuation studies in the Water Framework Directive, Final report, Project WFD55. Sniffer reportLabadie JW (2004) Optimal operation of multi-reservoir systems: state-of-the-art review. J Water Resour Plan Manag 130:93–111Lescot J-M, Bordenave P, Petit K, Leccia O (2013) A spatially-distributed cost-effectiveness analysis framework for controlling water pollution. Environ Model Softw 41:107–122Loucks DP, van Beek E (2005) Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications. UNESCO, ParisLoucks DP, Kindler J, Fedra K (1985) Interactive water resources modeling and model use: an overview. Water Resour Res 21:95–102Madani K (2010) Game theory and water resources. J Hydrol 381:225–238Martin-Carrasco F, Garrote L, Iglesias A, Mediero L (2013) Diagnosing causes of water scarcity in complex water resources systems and identifying risk management actions. Water Resour Manag 27:1693–1705. doi: 10.1007/s11269-012-0081-6Martin-Ortega J (2012) Economic prescriptions and policy applications in the implementation of the European water framework directive. Environ Sci Policy 24:83–91Martin-Ortega J, Balana BB (2012) Cost-effectiveness analysis in the implementation of the water framework directive: a comparative analysis of the United Kingdom and Spain. Eur Water 37:15–25Matrosov ES, Padula S, Harou JJ (2013) Selecting portfolios of water supply and demand management strategies under uncertainty—contrasting economic optimisation and ‘robust decision making’ approaches. Water Resour Manag 27:1123–1148. doi: 10.1007/s11269-012-0118xMEEDDT (Ministère de l’écologie, de l’énergie, du développement durable et de l’aménagement du territoire) (2008) Circulaire du 30 juin 2008 relative à la résorption des déficits quantitatifs en matière de prélèvement d’eau et gestion collective des prélèvements d’irrigation NOR : DEVO0815432C, Bulletin officiel du Ministère de l’écologie, de l’énergie, du développement durable et de l’aménagement du terittoire, Paris, 2008 (In French)Messner F (2006) Guest editorial: applying participatory multicriteria methods to river basin management: improving the implementation of the water framework directive. Environ Plan C: Gov Policy 24(2):159–167Mouelhi S, Michel C, Perrin C, Andréassian V (2006) Stepwise development of a two-parameter monthly water balance model. J Hydrol 318:200–214. doi: 10.1016/j.jhydrol.2005.06.014Padula S, Harou JJ, Papageorgiou LG, Ji Y, Ahmad M, Hepworth N (2013) Least economic cost regional water supply planning-optimising infrastructure investments and demand management for south east England’s 17.6 million people. Water Resour Manag 27:5017–5044. doi: 10.1007/s11269-013-0437-6Pagé C, Terray L (2010) Nouvelles projections climatiques à échelle fine sur la France pour le 21ème siècle : les scénarii SCRATCH2010. Technical Report TR/CMGC/10/58, SUC au CERFACS, URA CERFACS/CNRS No1875CS, Toulouse, France ( http://www.cerfacs.fr/~page/work/scratch/ ). (In French)Peña-Haro S, Pulido-Velazquez M, Sahuquillo A (2009) A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture. J Hydrol 373:193–203Peña-Haro S, Llopis-Albert C, Pulido-Velázquez M, Pulido-Velázquez D (2010) Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain. J Hydrol 392:174–187Pulido-Velázquez M, Sahuquillo A, Ochoa JC, Pulido-Velázquez D (2005) Modeling of stream-aquifer interaction: the embedded multireservoir model. J of Hydrology 313(3-4):166–181Pulido-Velázquez M, Sahuquillo A, Andreu J (2006) Economic optimization of conjunctive use of surface and groundwater at the basin scale. J Water Resour Plan Manag 132(6):454–467Pulido-Velazquez M, Andreu J, Sahuquillo A, Pulido-Velazquez D (2008) Hydro-economic river basin modelling: the application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain. Ecol Econ 66:51–65Pulido-Velázquez M, Andreu J, Sahuquillo A, Pulido-Velazquez D (2008) Hydro-economic river basin modelling: the application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain. Ecol Econ 66(1):51–65Rinaudo J-D, Maton L, Caballero Y (2010) Cost-effectiveness analysis of a water scarcity management plan: considering long term socio-economic and climatic changes. Conference on Economics of drought and drought preparedness in a climate Change Context. Istambul, 3-7 March 2010. FAO, ICARDA, CEIGRAM, CHIEAM, Ministry of agriculture TurkeyRinaudo J-D, Neverre N, Montginoul M (2012) Simulating the impact of pricing policies on residential water demand: a southern France case study. Water Resour Manag 26:2057–2068Rinaudo J-D, Aulong S (2014) Defining groundwater remediation objectives with cost-benefit analysis: does it work ? Water Resour Manag 28(1):261–278Rinaudo J D, Girard C, Vernier de Byans C (2013), Analyse coût efficacité du programme de mesures de gestion quantitative : Application de deux méthodes au bassin versant de l’Orb Rapport BRGM. Available at http://infoterre.brgm.fr/rapports/RP-62713-FR.pdf (In French)Rinaudo J-D, Noel Y, Marchal J-P, Lamotte C (2013) Evaluation du coût de mobilisation de nouvelles ressources en eau souterraine dans l’Ouest de l’Hérault. Rapport BRGM-RP- 61794-FR http://infoterre.brgm.fr/rapports/RP-61794-FR.pdf (In French)ROSENTHAL E (2012) GAMS, A User’s Guide Tutorial by Richard E. Rosenthal. GAMS Development Corporation, Washington, DCSMVO (Syndicat Mixte de la Vallée de l’Orb) (2013) Contrat de rivière Orb-Libron, 2011–2015, Dossier définitif, Dossier M001 8 03 039 / EV. http://www.vallees-orb-libron.fr/wp-content/uploads/2012/12/dossier-definitif-contrat-riviere-orb-libron-11-15.pdf (In French)Udías A, Efremov R, Galbiati L, Cañamón I (2012) Simulation and multicriteria optimization modeling approach for regional water restoration management. Ann Oper Res 1–18Van Engelen D, Seidelin C, van der Veeren R, Barton DN, Queb K (2008) Cost-effectiveness analysis for the implementation of the EU Water Framework Directive. Water Policy 10(3):207–220Vier E, Aigoui F (2011) Etude de definition des debits d’ etiage de reference pour la mise en oeuvre d’une gestion quantitative de la ressource en eau dans le bassin de l’Orb. Rapport provisoire phases 1 et 2. Avril 2011. Syndicat mixte de la vallee de l’Orb. (in French)Vernier de Byans M, Rinaudo JD (2012) Scénarios d’évolution de la demande en eau potable à l’horizon 2030 dans l’Ouest Hérault. Rapport BRGM/RP-61317-FR.Brgm : Orléans. 51 p + ann. Available at http://infoterre.brgm.fr/rapports/RP-61317-FR.pdfVoinov A, Bousquet F (2010) Modelling with stakeholders. Environ Model Softw 25:1268–1281Ward FA (2009) Economics in integrated water management. Environ Model Softw 24(8):948–958WATECO (WORKING GROUP 2.6) (2003) Common implementation strategy for the Water Framework Directive (2000/60/EC). Guidance Document no.1.Economics and the Environment - The implementation Challenge of the Water Framework DirectiveWhite SB, Fane SA, Robinson D (2003) The use of levelised cost in comparing supply and demand side options for water supply and wastewater treatment. Water Supply 3(3):185–192Wright SAL, Fritsch O (2011) Operationalising active involvement in the EU water framework directive: why, when and how? Ecol Econ 70:2268–2274Wurbs, RA (1996) Modeling and Analysis of Reservoir System Operation, Prentice HallZhou Y, Tol RSJ (2005) Evaluating the costs of desalination and water transport. Water Resour Res 41:1–1
    corecore