158 research outputs found
A Two-Threshold Model for Scaling Laws of Non-Interacting Snow Avalanches
The sizes of snow slab failure that trigger snow avalanches are power-law
distributed. Such a power-law probability distribution function has also been
proposed to characterize different landslide types. In order to understand this
scaling for gravity driven systems, we introduce a two-threshold 2-d cellular
automaton, in which failure occurs irreversibly. Taking snow slab avalanches as
a model system, we find that the sizes of the largest avalanches just
preceeding the lattice system breakdown are power law distributed. By tuning
the maximum value of the ratio of the two failure thresholds our model
reproduces the range of power law exponents observed for land-, rock- or snow
avalanches. We suggest this control parameter represents the material cohesion
anisotropy.Comment: accepted PR
Locking Local Oscillator Phase to the Atomic Phase via Weak Measurement
We propose a new method to reduce the frequency noise of a Local Oscillator
(LO) to the level of white phase noise by maintaining (not destroying by
projective measurement) the coherence of the ensemble pseudo-spin of atoms over
many measurement cycles. This scheme uses weak measurement to monitor the phase
in Ramsey method and repeat the cycle without initialization of phase and we
call, "atomic phase lock (APL)" in this paper. APL will achieve white phase
noise as long as the noise accumulated during dead time and the decoherence are
smaller than the measurement noise. A numerical simulation confirms that with
APL, Allan deviation is averaged down at a maximum rate that is proportional to
the inverse of total measurement time, tau^-1. In contrast, the current atomic
clocks that use projection measurement suppress the noise only down to the
level of white frequency, in which case Allan deviation scales as tau^-1/2.
Faraday rotation is one of the possible ways to realize weak measurement for
APL. We evaluate the strength of Faraday rotation with 171Yb+ ions trapped in a
linear rf-trap and discuss the performance of APL. The main source of the
decoherence is a spontaneous emission induced by the probe beam for Faraday
rotation measurement. One can repeat the Faraday rotation measurement until the
decoherence become comparable to the SNR of measurement. We estimate this
number of cycles to be ~100 cycles for a realistic experimental parameter.Comment: 18 pages, 7 figures, submitted to New Journal of Physic
Optical measurement of heteronuclear cross-relaxation interactions in Tm:YAG
We investigate cross-relaxation interactions between Tm and Al in Tm:YAG
using two optical methods: spectral holeburning and stimulated echoes. These
interactions lead to a reduction in the hyperfine lifetime at magnetic fields
that bring the Tm hyperfine transition into resonance with an Al transition. We
develop models for measured echo decay curves and holeburning spectra near a
resonance, which are used to show that the Tm-Al interaction has a resonance
width of 10~kHz and reduces the hyperfine lifetime to 0.5 ms. The antihole
structure is consistent with an interaction dominated by the Al nearest
neighbors at 3.0 Angstroms, with some contribution from the next nearest
neighbors at 3.6 Angstroms.Comment: 13 pages, 9 figure
Possible deviations from Griffith's criterion in shallow slabs, and consequences on slab avalanche release
International audiencePossible reasons for deviations from Griffith's criterion in slab avalanche triggerings are examined. In the case of a major basal crack, we show (i) that the usual form of Griffith's criterion is valid if elastic energy is stored in a shallow and hard slab only, and (ii) that rapid healing of broken ice bonds may lead to shear toughnesses larger than expected from tensile toughness experiments. In the case of avalanches resulting from failure of multi-cracked weak layers, where a simple Griffith's criterion cannot be applied, frequency/size plots obtained from discrete elements and cellular automata simulations are shown to obey scale invariant power law distributions. These findings are confirmed by both frequency/acoustic emission duration and frequency/size plots obtained from field data, suggesting that avalanche triggerings may be described using the formalism of critical phenomena
Quantum frequency estimation with trapped ions and atoms
We discuss strategies for quantum enhanced estimation of atomic transition
frequencies with ions stored in Paul traps or neutral atoms trapped in optical
lattices. We show that only marginal quantum improvements can be achieved using
standard Ramsey interferometry in the presence of collective dephasing, which
is the major source of noise in relevant experimental setups. We therefore
analyze methods based on decoherence free subspaces and prove that quantum
enhancement can readily be achieved even in the case of significantly imperfect
state preparation and faulty detections.Comment: 5 pages + 6 pages appendices; published versio
Spatial fluctuations in transient creep deformation
We study the spatial fluctuations of transient creep deformation of materials
as a function of time, both by Digital Image Correlation (DIC) measurements of
paper samples and by numerical simulations of a crystal plasticity or discrete
dislocation dynamics model. This model has a jamming or yielding phase
transition, around which power-law or Andrade creep is found. During primary
creep, the relative strength of the strain rate fluctuations increases with
time in both cases - the spatially averaged creep rate obeys the Andrade law
, while the time dependence of the spatial
fluctuations of the local creep rates is given by . A similar scaling for the fluctuations is found in the logarithmic
creep regime that is typically observed for lower applied stresses. We review
briefly some classical theories of Andrade creep from the point of view of such
spatial fluctuations. We consider these phenomenological, time-dependent creep
laws in terms of a description based on a non-equilibrium phase transition
separating evolving and frozen states of the system when the externally applied
load is varied. Such an interpretation is discussed further by the data
collapse of the local deformations in the spirit of absorbing state/depinning
phase transitions, as well as deformation-deformation correlations and the
width of the cumulative strain distributions. The results are also compared
with the order parameter fluctuations observed close to the depinning
transition of the 2 Linear Interface Model or the quenched Edwards-Wilkinson
equation.Comment: 27 pages, 18 figure
Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter
We present a numerical method, based on a FEM simulation, for the
determination of the gravitational field generated by massive objects, whatever
geometry and space mass density they have. The method was applied for the
determination of the self gravity effect of an absolute cold atom gravimeter
which aims at a relative uncertainty of 10-9. The deduced bias, calculated with
a perturbative treatment, is finally presented. The perturbation reaches (1.3
\pm 0.1) \times 10-9 of the Earth's gravitational field.Comment: 12 pages, 7 figure
Precision atomic gravimeter based on Bragg diffraction
We present a precision gravimeter based on coherent Bragg diffraction of
freely falling cold atoms. Traditionally, atomic gravimeters have used
stimulated Raman transitions to separate clouds in momentum space by driving
transitions between two internal atomic states. Bragg interferometers utilize
only a single internal state, and can therefore be less susceptible to
environmental perturbations. Here we show that atoms extracted from a
magneto-optical trap using an accelerating optical lattice are a suitable
source for a Bragg atom interferometer, allowing efficient beamsplitting and
subsequent separation of momentum states for detection. Despite the inherently
multi-state nature of atom diffraction, we are able to build a Mach-Zehnder
interferometer using Bragg scattering which achieves a sensitivity to the
gravitational acceleration of with an
integration time of 1000s. The device can also be converted to a gravity
gradiometer by a simple modification of the light pulse sequence.Comment: 13 pages, 11 figure
Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms
About 300 experiments have tried to determine the value of the Newtonian
gravitational constant, G, so far, but large discrepancies in the results have
made it impossible to know its value precisely. The weakness of the
gravitational interaction and the impossibility of shielding the effects of
gravity make it very difficult to measure G while keeping systematic effects
under control. Most previous experiments performed were based on the torsion
pendulum or torsion balance scheme as in the experiment by Cavendish in 1798,
and in all cases macroscopic masses were used. Here we report the precise
determination of G using laser-cooled atoms and quantum interferometry. We
obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative
uncertainty of 150 parts per million (the combined standard uncertainty is
given in parentheses). Our value differs by 1.5 combined standard deviations
from the current recommended value of the Committee on Data for Science and
Technology. A conceptually different experiment such as ours helps to identify
the systematic errors that have proved elusive in previous experiments, thus
improving the confidence in the value of G. There is no definitive relationship
between G and the other fundamental constants, and there is no theoretical
prediction for its value, against which to test experimental results. Improving
the precision with which we know G has not only a pure metrological interest,
but is also important because of the key role that G has in theories of
gravitation, cosmology, particle physics and astrophysics and in geophysical
models.Comment: 3 figures, 1 tabl
- …