151 research outputs found
Optical study of the anisotropic erbium spin flip-flop dynamics
We investigate the erbium flip-flop dynamics as a limiting factor of the
electron spin lifetime and more generally as an indirect source of decoherence
in rare-earth doped insulators. Despite the random isotropic arrangement of
dopants in the host crystal, the dipolar interaction strongly depends on the
magnetic field orientation following the strong anisotropy of the -factor.
In Er:YSiO, we observe by transient optical spectroscopy a three
orders of magnitude variation of the erbium flip-flop rate (10ppm dopant
concentration). The measurements in two different samples, with 10ppm and 50ppm
concentrations, are well-supported by our analytic modeling of the dipolar
coupling between identical spins with an anisotropic -tensor. The model can
be applied to other rare-earth doped materials. We extrapolate the calculation
to Er:CaWO, Er:LiNbO and Nd:YSiO at
different concentrations
Locking Local Oscillator Phase to the Atomic Phase via Weak Measurement
We propose a new method to reduce the frequency noise of a Local Oscillator
(LO) to the level of white phase noise by maintaining (not destroying by
projective measurement) the coherence of the ensemble pseudo-spin of atoms over
many measurement cycles. This scheme uses weak measurement to monitor the phase
in Ramsey method and repeat the cycle without initialization of phase and we
call, "atomic phase lock (APL)" in this paper. APL will achieve white phase
noise as long as the noise accumulated during dead time and the decoherence are
smaller than the measurement noise. A numerical simulation confirms that with
APL, Allan deviation is averaged down at a maximum rate that is proportional to
the inverse of total measurement time, tau^-1. In contrast, the current atomic
clocks that use projection measurement suppress the noise only down to the
level of white frequency, in which case Allan deviation scales as tau^-1/2.
Faraday rotation is one of the possible ways to realize weak measurement for
APL. We evaluate the strength of Faraday rotation with 171Yb+ ions trapped in a
linear rf-trap and discuss the performance of APL. The main source of the
decoherence is a spontaneous emission induced by the probe beam for Faraday
rotation measurement. One can repeat the Faraday rotation measurement until the
decoherence become comparable to the SNR of measurement. We estimate this
number of cycles to be ~100 cycles for a realistic experimental parameter.Comment: 18 pages, 7 figures, submitted to New Journal of Physic
Optical measurement of heteronuclear cross-relaxation interactions in Tm:YAG
We investigate cross-relaxation interactions between Tm and Al in Tm:YAG
using two optical methods: spectral holeburning and stimulated echoes. These
interactions lead to a reduction in the hyperfine lifetime at magnetic fields
that bring the Tm hyperfine transition into resonance with an Al transition. We
develop models for measured echo decay curves and holeburning spectra near a
resonance, which are used to show that the Tm-Al interaction has a resonance
width of 10~kHz and reduces the hyperfine lifetime to 0.5 ms. The antihole
structure is consistent with an interaction dominated by the Al nearest
neighbors at 3.0 Angstroms, with some contribution from the next nearest
neighbors at 3.6 Angstroms.Comment: 13 pages, 9 figure
Revival of Silenced Echo and Quantum Memory for Light
We propose an original quantum memory protocol. It belongs to the class of
rephasing processes and is closely related to two-pulse photon echo. It is
known that the strong population inversion produced by the rephasing pulse
prevents the plain two-pulse photon echo from serving as a quantum memory
scheme. Indeed gain and spontaneous emission generate prohibitive noise. A
second -pulse can be used to simultaneously reverse the atomic phase and
bring the atoms back into the ground state. Then a secondary echo is radiated
from a non-inverted medium, avoiding contamination by gain and spontaneous
emission noise. However, one must kill the primary echo, in order to preserve
all the information for the secondary signal. In the present work, spatial
phase mismatching is used to silence the standard two-pulse echo. An
experimental demonstration is presented.Comment: 13 pages, 6 figure
Possible deviations from Griffith's criterion in shallow slabs, and consequences on slab avalanche release
International audiencePossible reasons for deviations from Griffith's criterion in slab avalanche triggerings are examined. In the case of a major basal crack, we show (i) that the usual form of Griffith's criterion is valid if elastic energy is stored in a shallow and hard slab only, and (ii) that rapid healing of broken ice bonds may lead to shear toughnesses larger than expected from tensile toughness experiments. In the case of avalanches resulting from failure of multi-cracked weak layers, where a simple Griffith's criterion cannot be applied, frequency/size plots obtained from discrete elements and cellular automata simulations are shown to obey scale invariant power law distributions. These findings are confirmed by both frequency/acoustic emission duration and frequency/size plots obtained from field data, suggesting that avalanche triggerings may be described using the formalism of critical phenomena
Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry
We report on a novel experiment to generate non-classical atomic states via
quantum non-demolition (QND) measurements on cold atomic samples prepared in a
high finesse ring cavity. The heterodyne technique developed for the QND
detection exhibits an optical shot-noise limited behavior for local oscillator
optical power of a few hundred \muW, and a detection bandwidth of several GHz.
This detection tool is used in single pass to follow non destructively the
internal state evolution of an atomic sample when subjected to Rabi
oscillations or a spin-echo interferometric sequence.Comment: 23 page
Quantum frequency estimation with trapped ions and atoms
We discuss strategies for quantum enhanced estimation of atomic transition
frequencies with ions stored in Paul traps or neutral atoms trapped in optical
lattices. We show that only marginal quantum improvements can be achieved using
standard Ramsey interferometry in the presence of collective dephasing, which
is the major source of noise in relevant experimental setups. We therefore
analyze methods based on decoherence free subspaces and prove that quantum
enhancement can readily be achieved even in the case of significantly imperfect
state preparation and faulty detections.Comment: 5 pages + 6 pages appendices; published versio
Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates
Squeezed states, a special kind of entangled states, are known as a useful
resource for quantum metrology. In interferometric sensors they allow to
overcome the "classical" projection noise limit stemming from the independent
nature of the individual photons or atoms within the interferometer. Motivated
by the potential impact on metrology as wells as by fundamental questions in
the context of entanglement, a lot of theoretical and experimental effort has
been made to study squeezed states. The first squeezed states useful for
quantum enhanced metrology have been proposed and generated in quantum optics,
where the squeezed variables are the coherences of the light field. In this
tutorial we focus on spin squeezing in atomic systems. We give an introduction
to its concepts and discuss its generation in Bose-Einstein condensates. We
discuss in detail the experimental requirements necessary for the generation
and direct detection of coherent spin squeezing. Two exemplary experiments
demonstrating adiabatically prepared spin squeezing based on motional degrees
of freedom and diabatically realized spin squeezing based on internal hyperfine
degrees of freedom are discussed.Comment: Phd tutorial, 23 pages, 17 figure
Light storage protocols in Tm:YAG
We present two quantum memory protocols for solids: A stopped light approach
based on spectral hole burning and the storage in an atomic frequency comb.
These procedures are well adapted to the rare-earth ion doped crystals. We
carefully clarify the critical steps of both. On one side, we show that the
slowing-down due to hole-burning is sufficient to produce a complete mapping of
field into the atomic system. On the other side, we explain the storage and
retrieval mechanism of the Atomic Frequency Comb protocol. This two important
stages are implemented experimentally in Tm- doped
yttrium-aluminum-garnet crystal
Spatial fluctuations in transient creep deformation
We study the spatial fluctuations of transient creep deformation of materials
as a function of time, both by Digital Image Correlation (DIC) measurements of
paper samples and by numerical simulations of a crystal plasticity or discrete
dislocation dynamics model. This model has a jamming or yielding phase
transition, around which power-law or Andrade creep is found. During primary
creep, the relative strength of the strain rate fluctuations increases with
time in both cases - the spatially averaged creep rate obeys the Andrade law
, while the time dependence of the spatial
fluctuations of the local creep rates is given by . A similar scaling for the fluctuations is found in the logarithmic
creep regime that is typically observed for lower applied stresses. We review
briefly some classical theories of Andrade creep from the point of view of such
spatial fluctuations. We consider these phenomenological, time-dependent creep
laws in terms of a description based on a non-equilibrium phase transition
separating evolving and frozen states of the system when the externally applied
load is varied. Such an interpretation is discussed further by the data
collapse of the local deformations in the spirit of absorbing state/depinning
phase transitions, as well as deformation-deformation correlations and the
width of the cumulative strain distributions. The results are also compared
with the order parameter fluctuations observed close to the depinning
transition of the 2 Linear Interface Model or the quenched Edwards-Wilkinson
equation.Comment: 27 pages, 18 figure
- …