157 research outputs found
Equation of state of cubic boron nitride at high pressures and temperatures
We report accurate measurements of the equation of state (EOS) of cubic boron
nitride by x-ray diffraction up to 160 GPa at 295 K and 80 GPa in the range
500-900 K. Experiments were performed on single-crystals embedded in a
quasi-hydrostatic pressure medium (helium or neon). Comparison between the
present EOS data at 295 K and literature allows us to critically review the
recent calibrations of the ruby standard. The full P-V-T data set can be
represented by a Mie-Gr\"{u}neisen model, which enables us to extract all
relevant thermodynamic parameters: bulk modulus and its first
pressure-derivative, thermal expansion coefficient, thermal Gr\"{u}neisen
parameter and its volume dependence. This equation of state is used to
determine the isothermal Gr\"{u}neisen mode parameter of the Raman TO band. A
new formulation of the pressure scale based on this Raman mode, using
physically-constrained parameters, is deduced.Comment: 8 pages, 7 figure
Monte Carlo Analysis of a New Interatomic Potential for He
By means of a Quadratic Diffusion Monte Carlo method we have performed a
comparative analysis between the Aziz potential and a revised version of it.
The results demonstrate that the new potential produces a better description of
the equation of state for liquid He. In spite of the improvement in the
description of derivative magnitudes of the energy, as the pressure or the
compressibility, the energy per particle which comes from this new potential is
lower than the experimental one. The inclusion of three-body interactions,
which give a repulsive contribution to the potential energy, makes it feasible
that the calculated energy comes close to the experimental result.Comment: 36 pages, LaTex, 11 PostScript figures include
Exercise-induced left bundle branch block and subsequent mechanical left ventricular dyssynchrony -resolved with pharmacological therapy
A 53-year-old man with depressed ejection fraction (EF) of 35% and QRS width of 88 ms at rest was admitted to our institution with a complaint of exertional chest discomfort and dyspnea. During treadmill exercise, left bundle-branch block (LBBB) with a QRS width of 152 ms occurred at a heart rate of 100 bpm. During LBBB, the patient showed significant mechanical dyssynchrony as evidenced by a two-dimensional speckle tracking radial strain of 260 ms (â„130 ms), defined as the time difference between anterior-septum and posterior wall. Five-month after carvedilol and candesartan administration, EF had improved to 49% and LBBB did not occur until a heart rate of 126 bpm was attained during treadmill exercise. It appears that pharmacological therapy may be useful for patients with heart failure and exercise-induced LBBB
Wannier-function description of the electronic polarization and infrared absorption of high-pressure hydrogen
We have constructed maximally-localized Wannier functions for prototype
structures of solid molecular hydrogen under pressure, starting from LDA and
tight-binding Bloch wave functions. Each occupied Wannier function can be
associated with two paired protons, defining a ``Wannier molecule''. The sum of
the dipole moments of these ``molecules'' always gives the correct macroscopic
polarization, even under strong compression, when the overlap between nearby
Wannier functions becomes significant. We find that at megabar pressures the
contributions to the dipoles arising from the overlapping tails of the Wannier
functions is very large. The strong vibron infrared absorption experimentally
observed in phase III, above ~ 150 GPa, is analyzed in terms of the
vibron-induced fluctuations of the Wannier dipoles. We decompose these
fluctuations into ``static'' and ``dynamical'' contributions, and find that at
such high densities the latter term, which increases much more steeply with
pressure, is dominant.Comment: 17 pages, two-column style with 14 postscript figures embedded. Uses
REVTEX and epsf macro
Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation
The study of the high pressure phase diagram of hydrogen has continued with renewed effort for about one century as it remains a fundamental challenge for experimental and theoretical techniques. Here we employ an efficient molecular dynamics based on the quantum Monte Carlo method, which can describe accurately the electronic correlation and treat a large number of hydrogen atoms, allowing a realistic and reliable prediction of thermodynamic properties. We find that the molecular liquid phase is unexpectedly stable, and the transition towards a fully atomic liquid phase occurs at much higher pressure than previously believed. The old standing problem of low-temperature atomization is, therefore, still far from experimental reach
Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system.
The quantum nature of the proton can crucially affect the structural and physical properties of hydrogen compounds. For example, in the high-pressure phases of H2O, quantum proton fluctuations lead to symmetrization of the hydrogen bond and reduce the boundary between asymmetric and symmetric structures in the phase diagram by 30 gigapascals (ref. 3). Here we show that an analogous quantum symmetrization occurs in the recently discovered sulfur hydride superconductor with a superconducting transition temperature Tc of 203 kelvin at 155 gigapascals--the highest Tc reported for any superconductor so far. Superconductivity occurs via the formation of a compound with chemical formula H3S (sulfur trihydride) with sulfur atoms arranged on a body-centred cubic lattice. If the hydrogen atoms are treated as classical particles, then for pressures greater than about 175 gigapascals they are predicted to sit exactly halfway between two sulfur atoms in a structure with Im3m symmetry. At lower pressures, the hydrogen atoms move to an off-centre position, forming a short H-S covalent bond and a longer H···S hydrogen bond in a structure with R3m symmetry. X-ray diffraction experiments confirm the H3S stoichiometry and the sulfur lattice sites, but were unable to discriminate between the two phases. Ab initio density-functional-theory calculations show that quantum nuclear motion lowers the symmetrization pressure by 72 gigapascals for H3S and by 60 gigapascals for D3S. Consequently, we predict that the Im3m phase dominates the pressure range within which the high Tc was measured. The observed pressure dependence of Tc is accurately reproduced in our calculations for the phase, but not for the R3m phase. Therefore, the quantum nature of the proton fundamentally changes the superconducting phase diagram of H3S.We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (FIS2013- 48286-C2-2-P), French Agence Nationale de la Recherche (Grant No. ANR-13-IS10-0003- 392 01), EPSRC (UK) (Grant No. EP/J017639/1), Cambridge Commonwealth Trust, National Natural Science Foundation of China (Grants No. 11204111, 11404148, and 11274136), and 2012 Changjiang Scholars Program of China. Work at Carnegie was supported by EFree, an Energy Frontier Research Center funded by the DOE, Office of Science, Basic Energy Sciences under Award No. DE-SC-0001057. Computer facilities were provided by the PRACE project AESFT and the Donostia International Physics Center (DIPC).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1717
The BRICS (Bronchiectasis Radiologically Indexed CT Score)- a multi-center study score for use in idiopathic and post infective bronchiectasis
OBJECTIVES: The goal of this study was to develop a simplified radiological score that could assess clinical disease severity in bronchiectasis. METHODS: The Bronchiectasis Radiologically Indexed CT Score (BRICS) was devised based on a multivariable analysis of the Bhalla score and its ability in predicting clinical parameters of severity. The score was then externally validated in six centers in 302 patients. RESULTS: A total of 184 high-resolution CT scans were scored for the validation cohort. In a multiple logistic regression model, disease severity markers significantly associated with the Bhalla score were percent predicted FEV1, sputum purulence, and exacerbations requiring hospital admission. Components of the Bhalla score that were significantly associated with the disease severity markers were bronchial dilatation and number of bronchopulmonary segments with emphysema. The BRICS was developed with these two parameters. The receiver operating-characteristic curve values for BRICS in the derivation cohort were 0.79 for percent predicted FEV1, 0.71 for sputum purulence, and 0.75 for hospital admissions per year; these values were 0.81, 0.70, and 0.70, respectively, in the validation cohort. Sputum free neutrophil elastase activity was significantly elevated in the group with emphysema on CT imaging. CONCLUSIONS: A simplified CT scoring system can be used as an adjunct to clinical parameters to predict disease severity in patients with idiopathic and postinfective bronchiectasis
Absence of Metallization in Solid Molecular Hydrogen
Being the simplest element with just one electron and proton the electronic
structure of the Hydrogen atom is known exactly. However, this does not hold
for the complex interplay between them in a solid and in particular not at high
pressure that is known to alter the crystal as well as the electronic
structure. Back in 1935 Wigner and Huntington predicted that at very high
pressure solid molecular hydrogen would dissociate and form an atomic solid
that is metallic. In spite of intense research efforts the experimental
realization, as well as the theoretical determination of the crystal structure
has remained elusive. Here we present a computational study showing that the
distorted hexagonal P6/m structure is the most likely candidate for Phase
III of solid hydrogen. We find that the pairing structure is very persistent
and insulating over the whole pressure range, which suggests that metallization
due to dissociation may precede eventual bandgap closure. Due to the fact that
this not only resolve one of major disagreement between theory and experiment,
but also excludes the conjectured existence of phonon-driven superconductivity
in solid molecular hydrogen, our results involve a complete revision of the
zero-temperature phase diagram of Phase III
Understanding high pressure hydrogen with a hierarchical machine-learned potential
The hydrogen phase diagram has a number of unusual features which are
generally well reproduced by density functional calculations. Unfortunately,
these calculations fail to provide good physical insights into why those
features occur. In this paper, we parameterize a model potential for molecular
hydrogen which permits long and large simulations. The model shows excellent
reproduction of the phase diagram, including the broken-symmetry Phase II, an
efficiently-packed phase III and the maximum in the melt curve. It also gives
an excellent reproduction of the vibrational frequencies, including the maximum
in the vibrational frequency and negative thermal expansion. By
detailed study of lengthy molecular dynamics, we give intuitive explanations
for observed and calculated properties. All solid structures approximate to
hexagonal close packed, with symmetry broken by molecular orientation. At high
pressure, Phase I shows significant short-ranged correlations between molecular
orientations. The turnover in Raman frequency is due to increased coupling
between neighboring molecules, rather than weakening of the bond. The liquid is
denser than the close-packed solid because, at molecular separations below
2.3\AA, the favoured relative orientation switches from
quadrupole-energy-minimising to steric-repulsion-minimising. The latter allows
molecules to get closer together, without atoms getting closer but this cannot
be achieved within the constraints of a close-packed layer
MRI of the kidneyâstate of the art
Ultrasound and computed tomography (CT) are modalities of first choice in renal imaging. Until now, magnetic resonance imaging (MRI) has mainly been used as a problem-solving technique. MRI has the advantage of superior soft-tissue contrast, which provides a powerful tool in the detection and characterization of renal lesions. The MRI features of common and less common renal lesions are discussed as well as the evaluation of the spread of malignant lesions and preoperative assessment. MR urography technique and applications are discussed as well as the role of MRI in the evaluation of potential kidney donors. Furthermore the advances in functional MRI of the kidney are highlighted
- âŠ