16 research outputs found

    Kinetic Monte Carlo (KMC) Algorithm for Nanocrystals

    Get PDF
    This thesis uses the kinetic Monte Carlo (KMC) algorithm to examine the growth morphology and structure of nanocrystals. Crystal growth in a supersaturated gas of atoms and in an undercooled binary melt is investigated. First, in the gas phase, the interplay of the deposition and surface diffusion rates is studied. Then, the KMC algorithm is refined by including solidification events and finally, by adding diffusion in the surrounding liquid. A new algorithm is developed for modelling solidification from an undercooled melt. This algorithm combines the KMC method, which models the change in shape of the crystal during growth, with a macroscopic continuum method that tracks the diffusion of material through solution towards the crystal. For small length and time scales, this approach provides simple, effective front tracking with fully resolved atomistic detail of the crystal-melt interface. Anisotropy is included in the model as a surface diffusion process and the growth rate of the crystal is found to increase monotonically with increase in the surface anisotropy value. The method allows for the study of multiple crystal nuclei and Ostwald ripening. This method will aid researchers to explain why certain crystal shapes form under particular conditions during growth, and may enable nanotechnologists to design techniques for growing nanocrystals with specific shapes for a variety of applications, from catalysis to the medicine field and electronics industry. This will lead to a better understanding of the atomistic process of crystal growth at the nanoscale

    COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor

    No full text
    The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B-induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B-induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B-activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8(W285A) accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B-activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B-induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling

    Identification of tannic cell walls at the outer surface of the endosperm upon Arabidopsis seed coat rupture

    No full text
    The seed coat is specialized dead tissue protecting the plant embryo from mechanical and oxidative damage. Tannins, a type of flavonoids, are antioxidants known to accumulate in the Arabidopsis seed coat and transparent testa mutant seeds, deficient in flavonoid synthesis, exhibit low viability. However, their precise contribution to seed coat architecture and biophysics remains evasive. A seed coat cuticle, covering the endosperm outer surface and arising from the seed coat inner integument 1 cell layer was, intriguingly, previously shown to be more permeable in transparent testa mutants deficient not in cuticular component synthesis, but rather in flavonoid synthesis. Investigating the role of flavonoids in cuticle permeability led us to identify periclinal inner integument 1 tannic cell walls being attached, together with the cuticle, to the endosperm surface upon seed coat rupture. Hence, inner integument 1 tannic cell walls and the cuticle form two fused layers present at the surface of the exposed endosperm upon seed coat rupture, regulating its permeability. Their potential physiological role during seed germination is discussed

    A Maternally Deposited Endosperm Cuticle Contributes to the Physiological Defects of transparent testa Seeds

    No full text
    Mature dry seeds are highly resilient plant structures where the encapsulated embryo is kept protected and dormant to facilitate its ultimate dispersion. Seed viability is heavily dependent on the seed coat's capacity to shield living tissues from mechanical and oxidative stress. In Arabidopsis (Arabidopsis thaliana), the seed coat, also called the testa, arises after the differentiation of maternal ovular integuments during seed development. We recently described a thick cuticle tightly embedded in the mature seed's endosperm cell wall. We show here that it is produced by the maternal inner integument 1 layer and, remarkably, transferred to the developing endosperm. Arabidopsis transparent testa (tt) mutations cause maternally derived seed coat pigmentation defects. TT gene products encode proteins involved in flavonoid metabolism and regulators of seed coat development. tt mutants have abnormally high seed coat permeability, resulting in lower seed viability and dormancy. However, the biochemical basis of this high permeability is not fully understood. We show that the cuticles of developing tt mutant integuments have profound structural defects, which are associated with enhanced cuticle permeability. Genetic analysis indicates that a functional proanthocyanidin synthesis pathway is required to limit cuticle permeability, and our results suggest that proanthocyanidins could be intrinsic components of the cuticle. Together, these results show that the formation of a maternal cuticle is an intrinsic part of the normal integumental differentiation program leading to testa formation and is essential for the seed's physiological properties

    農民團體對行銷諮詢願付價值之研究:以品牌水果為例

    Get PDF
    International audienceCell fate decision during asymmetric division is mediated by the biased partition of cell fate determinants during mitosis [1-6]. In the case of the asymmetric division of the fly sensory organ precursor cells, directed Notch signaling from pIIb to the pIIa daughter endows pIIa with its distinct fate [1-6]. We have previously shown that Notch/Delta molecules internalized in the mother cell traffic through Sara endosomes and are directed to the pIIa daughter [6]. Here we show that the receptor Notch itself is required during the asymmetric targeting of the Sara endosomes to pIIa. Notch binds Uninflatable, and both traffic together through Sara endosomes, which is essential to direct asymmetric endosomes motility and Notch-dependent cell fate assignation. Our data uncover a part of the core machinery required for the asymmetric motility of a vesicular structure that is essential for the directed dispatch of Notch signaling molecules during asymmetric mitosis

    Functional divergence of Arabidopsis REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 and 2 in repression of flowering

    No full text
    Photoperiodic plants coordinate the timing of flowering with seasonal light cues, thereby optimizing their sexual reproductive success. The WD40-repeat protein REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) functions as a potent repressor of UV RESISTANCE LOCUS 8 (UVR8) photoreceptor-mediated UV-B induction of flowering under noninductive, short-day conditions in Arabidopsis (Arabidopsis thaliana); however, in contrast, the closely related RUP1 seems to play no major role. Here, analysis of chimeric ProRUP1:RUP2 and ProRUP2:RUP1 expression lines suggested that the distinct functions of RUP1 and RUP2 in repressing flowering are due to differences in both their coding and regulatory DNA sequences. Artificial altered expression using tissue-specific promoters indicated that RUP2 functions in repressing flowering when expressed in mesophyll and phloem companion cells, whereas RUP1 functions only when expressed in phloem companion cells. Endogenous RUP1 expression in vascular tissue was quantified as lower than that of RUP2, likely underlying the functional difference between RUP1 and RUP2 in repressing flowering. Taken together, our findings highlight the importance of phloem vasculature expression of RUP2 in repressing flowering under short days and identify a basis for the functional divergence of Arabidopsis RUP1 and RUP2 in regulating flowering time
    corecore