16,321 research outputs found

    An Imaging and Spectral Study of Ten X-Ray Filaments around the Galactic Center

    Full text link
    We report the detection of 10 new X-ray filaments using the data from the {\sl Chandra} X-ray satellite for the inner 66^{\prime} (15\sim 15 parsec) around the Galactic center (GC). All these X-ray filaments are characterized by non-thermal energy spectra, and most of them have point-like features at their heads that point inward. Fitted with the simple absorbed power-law model, the measured X-ray flux from an individual filament in the 2-10 keV band is 2.8×1014\sim 2.8\times10^{-14} to 101310^{-13} ergs cm2^{-2} s1^{-1} and the absorption-corrected X-ray luminosity is 10321033\sim 10^{32}-10^{33} ergs s1^{-1} at a presumed distance of 8 kpc to the GC. We speculate the origin(s) of these filaments by morphologies and by comparing their X-ray images with the corresponding radio and infrared images. On the basis of combined information available, we suspect that these X-ray filaments might be pulsar wind nebulae (PWNe) associated with pulsars of age 1033×10510^3 \sim 3\times 10^5 yr. The fact that most of the filament tails point outward may further suggest a high velocity wind blowing away form the GC.Comment: 29 pages with 7 figures and 3 pages included. Accepted to Ap

    System dynamic simulation of precision segmented reflector

    Get PDF
    A joint effort was undertaken on a Precision Segmented Reflector (PSR) Project. The missions in which the PSR is to be used will use large (up to 20 m in diameter) telescopes. The essential requirement for the telescopes is that the reflector surface of the primary mirror must be made extremely precise to allow no more than a few microns of errors and, additionally, this high surface precision must be maintained when the telescope is subjected to on-orbital mechanical and thermal disturbances. Based on the mass, size, and stability considerations, reflector surface formed by segmented, probably actively or passively controlled, composite panels are regarded as most suitable for future space based astronomical telescope applications. In addition to the design and fabrication of composite panels with a surface error of less than 3 microns RMS, PSR also develops related reflector structures, materials, control, and sensing technologies. As part of the planning effort for PSR Technology Demonstration, a system model which couples the reflector, consisting of panels, support truss and actuators, and the optical bench was assembled for dynamic simulations. Random vibration analyses using seismic data obtained from actual measurements at the test site designated for PSR Technology Demonstration are described

    Periodic and Localized Solutions of the Long Wave-Short Wave Resonance Interaction Equation

    Get PDF
    In this paper, we investigate the (2+1) dimensional long wave-short wave resonance interaction (LSRI) equation and show that it possess the Painlev\'e property. We then solve the LSRI equation using Painlev\'e truncation approach through which we are able to construct solution in terms of three arbitrary functions. Utilizing the arbitrary functions present in the solution, we have generated a wide class of elliptic function periodic wave solutions and exponentially localized solutions such as dromions, multidromions, instantons, multi-instantons and bounded solitary wave solutions.Comment: 13 pages, 6 figure

    Global axisymmetric stability analysis for a composite system of two gravitationally coupled scale-free discs

    Full text link
    In a composite system of gravitationally coupled stellar and gaseous discs, we perform linear stability analysis for axisymmetric coplanar perturbations using the two-fluid formalism. The background stellar and gaseous discs are taken to be scale-free with all physical variables varying as powers of cylindrical radius rr with compatible exponents. The unstable modes set in as neutral modes or stationary perturbation configurations with angular frequency ω=0\omega=0.Comment: 7 pages using AAS styl

    Envelope Expansion with Core Collapse. III. Similarity Isothermal Shocks in a Magnetofluid

    Full text link
    We explore MHD solutions for envelope expansions with core collapse (EECC) with isothermal MHD shocks in a quasi-spherical symmetry and outline potential astrophysical applications of such magnetized shock flows. MHD shock solutions are classified into three classes according to the downstream characteristics near the core. Class I solutions are those characterized by free-fall collapses towards the core downstream of an MHD shock, while Class II solutions are those characterized by Larson-Penston (LP) type near the core downstream of an MHD shock. Class III solutions are novel, sharing both features of Class I and II solutions with the presence of a sufficiently strong magnetic field as a prerequisite. Various MHD processes may occur within the regime of these isothermal MHD shock similarity solutions, such as sub-magnetosonic oscillations, free-fall core collapses, radial contractions and expansions. We can also construct families of twin MHD shock solutions as well as an `isothermal MHD shock' separating two magnetofluid regions of two different yet constant temperatures. The versatile behaviours of such MHD shock solutions may be utilized to model a wide range of astrophysical problems, including star formation in magnetized molecular clouds, MHD link between the asymptotic giant branch phase to the proto-planetary nebula phase with a hot central magnetized white dwarf, relativistic MHD pulsar winds in supernova remnants, radio afterglows of soft gamma-ray repeaters and so forth.Comment: 21 pages, 33 figures, accepted by MNRA

    Niclosamide enhances abiraterone treatment via inhibition of androgen receptor variants in castration resistant prostate cancer.

    Get PDF
    Considerable evidence from both clinical and experimental studies suggests that androgen receptor variants, particularly androgen receptor variant 7 (AR-V7), are critical in the induction of resistance to enzalutamide and abiraterone. In this study, we investigated the role of AR-V7 in the cross-resistance of enzalutamide and abiraterone and examined if inhibition of AR-V7 can improve abiraterone treatment response. We found that enzalutamide-resistant cells are cross-resistant to abiraterone, and that AR-V7 confers resistance to abiraterone. Knock down of AR-V7 by siRNA in abiraterone resistant CWR22Rv1 and C4-2B MDVR cells restored their sensitivity to abiraterone, indicating that AR-V7 is involved in abiraterone resistance. Abiraterone resistant prostate cancer cells generated by chronic treatment with abiraterone showed enhanced AR-V7 protein expression. Niclosamide, an FDA-approved antihelminthic drug that has been previously identified as a potent inhibitor of AR-V7, re-sensitizes resistant cells to abiraterone treatment in vitro and in vivo. In summary, this preclinical study suggests that overexpression of AR-V7 contributes to resistance to abiraterone, and supports the development of combination of abiraterone with niclosamide as a potential treatment for advanced castration resistant prostate cancer
    corecore