14 research outputs found

    Crystallization and preliminary diffraction analysis of Wzi, a member of the capsule export and assembly pathway in Escherichia coli

    Get PDF
    Wzi is a membrane protein from E. coli thought to be involved in the attachment of capsular polysaccharides to the bacterial surface. This reports describes recombinant Wzi’s purification, crystallization and the results of initial diffraction studies

    Altered Antibiotic Transport in OmpC Mutants Isolated from a Series of Clinical Strains of Multi-Drug Resistant E. coli

    Get PDF
    Antibiotic-resistant bacteria, particularly Gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane

    Structural and functional studies of bacterial outer membrane proteins

    Get PDF
    This thesis studies two particular bacterial outer membrane proteins called OmpC and Wzi, focusing on their expression, purification, crystallization and X-ray structure determination. A series of four naturally occurring OmpC mutants were isolated from a single patient with an E. coli infection of liver cysts. The isolated E. coli strains progressively exhibited increasing breadth of antibiotic resistance in which OmpC was predicted to take a partial role. We carried out an assay in which a strain of E. coli lacking OmpC was used to express the first (antibiotic sensitive) and the last (antibiotic resistant) of the clinical OmpC mutants and drug permeation assessed. Single channel conductance measurements were carried out and the X-ray structures for all the isolates were determined. Protein stability was assessed. With these data we propose that changes in the transverse electric field, not the pore size, underlie the clinically observed resistance to the antibiotics. This is the first demonstration of this strategy for antibiotic resistance. Wzi is a novel outer membrane protein involved in the biosynthesis and translocation mechanism of the K30 antigen from E. coli. The mechanism is a complicated process that requires several proteins including outer and inner membrane proteins. The protein Wzi was expressed, purified and crystallized. Initial crystals were tested and diffracted to 15Å. After optimization, a crystal diffracting to 2.4Å has been obtained

    Structural and functional studies of bacterial outer membrane proteins

    No full text
    This thesis studies two particular bacterial outer membrane proteins called OmpC and Wzi, focusing on their expression, purification, crystallization and X-ray structure determination. A series of four naturally occurring OmpC mutants were isolated from a single patient with an E. coli infection of liver cysts. The isolated E. coli strains progressively exhibited increasing breadth of antibiotic resistance in which OmpC was predicted to take a partial role. We carried out an assay in which a strain of E. coli lacking OmpC was used to express the first (antibiotic sensitive) and the last (antibiotic resistant) of the clinical OmpC mutants and drug permeation assessed. Single channel conductance measurements were carried out and the X-ray structures for all the isolates were determined. Protein stability was assessed. With these data we propose that changes in the transverse electric field, not the pore size, underlie the clinically observed resistance to the antibiotics. This is the first demonstration of this strategy for antibiotic resistance. Wzi is a novel outer membrane protein involved in the biosynthesis and translocation mechanism of the K30 antigen from E. coli. The mechanism is a complicated process that requires several proteins including outer and inner membrane proteins. The protein Wzi was expressed, purified and crystallized. Initial crystals were tested and diffracted to 15Å. After optimization, a crystal diffracting to 2.4Å has been obtained.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Protein and chemical determinants of BL-1249 action and selectivity for K2P channels

    No full text
    K-2P potassium channels generate leak currents that stabilize the resting membrane potential of excitable cells. Various K-2P channels are implicated in pain, ischemia, depression, migraine, and anesthetic responses, making this family an attractive target for small molecule modulator development efforts. BL-1249, a compound from the fenamate class of non steroidal anti-inflammatory drugs is known to activate K(2P)2.1 (TREK-1), the founding member of the thermo- and mechano-sensitive TREK subfamily; however, its mechanism of action and effects on other K-2P, channels are not well-defined. Here, we demonstrate that BL-1249 extracellular application activates all TREK subfamily members but has no effect on other K-2P subfamilies. Patch clamp experiments demonstrate that, similar to the diverse range of other chemical and physical TREK subfamily gating cues, BL-1249 stimulates the selectivity filter "C-type" gate that controls K-2P function. BL-1249 displays selectivity among the TREK subfamily, activating K(2P)2.1(TREK-1) and K(2P)10.1(TREK-2) similar to 10-fold more potently than K(2P)4.1(TRAAK). Investigation of mutants and K(2P)2.1(TREK-1)/K(2P)4.1(TRAAK) chimeras highlight the key roles of the C-terminal tail in BL-1249 action and identify the M2/M3 transmembrane helix interface as a key site of BL-1249 selectivity. Synthesis and characterization of a set of BL-1249 analogs demonstrates that both the tetrazole and opposing tetralin moieties are critical for function, whereas the conformational mobility between the two ring systems impacts selectivity. Together, our findings underscore the landscape of modes by which small molecules can affect K-2P channels and provide crucial information for the development of better and more selective K-2P modulators of the TREK subfamily
    corecore