19 research outputs found

    Tides in colliding galaxies

    Full text link
    Long tails and streams of stars are the most noticeable upshots of galaxy collisions. Their origin as gravitational, tidal, disturbances has however been recognized only less than fifty years ago and more than ten years after their first observations. This Review describes how the idea of galactic tides emerged, in particular thanks to the advances in numerical simulations, from the first ones that included tens of particles to the most sophisticated ones with tens of millions of them and state-of-the-art hydrodynamical prescriptions. Theoretical aspects pertaining to the formation of tidal tails are then presented. The third part of the review turns to observations and underlines the need for collecting deep multi-wavelength data to tackle the variety of physical processes exhibited by collisional debris. Tidal tails are not just stellar structures, but turn out to contain all the components usually found in galactic disks, in particular atomic / molecular gas and dust. They host star-forming complexes and are able to form star-clusters or even second-generation dwarf galaxies. The final part of the review discusses what tidal tails can tell us (or not) about the structure and content of present-day galaxies, including their dark components, and explains how tidal tails may be used to probe the past evolution of galaxies and their mass assembly history. On-going deep wide-field surveys disclose many new low-surface brightness structures in the nearby Universe, offering great opportunities for attempting galactic archeology with tidal tails.Comment: 46 pages, 13 figures, Review to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physics. Comments are most welcom

    Rheumatoid factor isotype switch and somatic mutation variants within rheumatoid arthritis synovium

    No full text
    The presence of clonally-related B-lymphocyte aggregates within synovial lining tisue of rheumatoid arthritis (RA) patients suggests a germinal centre-like reaction, which may hold implications for disease pathogenesis and the causes of chronic inflammation. We studied 250 rheumatoid factor (RF) heavy-chain sequences cloned from the synovium of three patients with RA, to determine whether they undergo both somatic mutation and isotype switching consistent with this hypothesis. Size analysis of immunoglobulin heavy-chain cDNAs from synovial RF+ B cells revealed oligoclonal RF+ populations and identically-sized VH-D-JH transcripts of different immunoglobulin isotypes. Sequencing of individual inserts selected from cloned immunoglobulin heavy-chain cDNAs demonstrated a clonal relationship between immunoglobulin M (IgM) RF and IgA RF, suggesting that this isotype switch occurred in synovium. Furthermore, most somatic mutations were found to have occurred after this isotype switch. This finding suggests that the RA synovial microenvironment sustains somatic mutation and isotype switching in RF-specific B lymphocytes akin to secondary lymphoid organs

    Nectar consumers

    No full text

    Biology of Neurotrophins, Neuropeptides, and Muscarinic Receptors in Asthma

    No full text
    corecore