66 research outputs found

    Cerebrospinal Fluid Tau Protein Levels and F-18-Fluorodeoxyglucose Positron Emission Tomography in the Differential Diagnosis of Alzheimer's Disease

    Get PDF
    Aims: In this study, we aimed to compare cerebrospinal fluid (CSF) levels of total tau (t-tau), phosphorylated tau (p-tau(181)) and positron emission tomography with F-18-fluorodeoxyglucose (FDG-PET) in the differential diagnosis of Alzheimer's disease (AD) under clinical conditions. Method: In a cross-sectional, blinded, single-center study, we examined a sample of 75 unselected memory clinic patients with clinical diagnoses of dementia of Alzheimer type (DAT; n = 24), amnestic mild cognitive impairment (MCI; n = 16), other dementias (n = 13) and nondemented controls (n = 22). Discriminative accuracy, sensitivity and specificity were calculated and compared using ROC analyses. Results: p-tau(181) and FDG-PET were comparable in separating DAT from controls (sensitivity: 67 vs. 79%; specificity: 91% for both) and patients with other dementias (sensitivity: 71 vs. 79%; specificity: 100% for both). The sensitivity of p-tau 181 in differentiating MCI patients from controls was significantly (p < 0.05) superior to that of FDG-PET (75 vs. 44%) at a comparably high specificity (82 vs. 91%); t-tau measures were less accurate in all analyses. Conclusions: FDG-PET and CSF p-tau(181) levels are able to discriminate DAT in heterogeneous and unselected samples with a high accuracy. CSF p-tau(181) might be somewhat superior for a sensitive detection of patients with MCI. Copyright (C) 2010 S. Karger AG, Base

    Challenges in the development of the Laser Metal Deposition process for use in microgravity at the Einstein-Elevator

    Get PDF
    This paper is about the challenges in developing the Laser Metal Deposition process with metal powder for use in microgravity. The modified gravitational conditions are set up for a few seconds using a drop tower, the Einstein-Elevator of the Leibniz University Hannover. In addition to the drop tower, the specially adapted setup of the experiment will be explained. The samples produced in microgravity during this project will demonstrate the influence of gravity on this additive manufacturing process and on the materials used. Thermal analyses using the Ansys software show how the temperature distribution of the manufactured specimens looks over time and what this means for the execution of the experiment

    Association of exposure to manganese and iron with striatal and thalamic GABA and other neurometabolites - Neuroimaging results from the WELDOX II study

    Get PDF
    OBJECTIVE: Magnetic resonance spectroscopy (MRS) is a non-invasive method to quantify neurometabolite concentrations in the brain. Within the framework of the WELDOX II study, we investigated the association of exposure to manganese (Mn) and iron (Fe) with γ-aminobutyric acid (GABA) and other neurometabolites in the striatum and thalamus of 154 men. MATERIAL AND METHODS: GABA-edited and short echo-time MRS at 3T was used to assess brain levels of GABA, glutamate, total creatine (tCr) and other neurometabolites. Volumes of interest (VOIs) were placed into the striatum and thalamus of both hemispheres of 47 active welders, 20 former welders, 36 men with Parkinson's disease (PD), 12 men with hemochromatosis (HC), and 39 male controls. Linear mixed models were used to estimate the influence of Mn and Fe exposure on neurometabolites while simultaneously adjusting for cerebrospinal fluid (CSF) content, age and other factors. Exposure to Mn and Fe was assessed by study group, blood concentrations, relaxation rates R1 and R2* in the globus pallidus (GP), and airborne exposure (active welders only). RESULTS: The median shift exposure to respirable Mn and Fe in active welders was 23μg/m3 and 110μg/m3, respectively. Airborne exposure was not associated with any other neurometabolite concentration. Mn in blood and serum ferritin were highest in active and former welders. GABA concentrations were not associated with any measure of exposure to Mn or Fe. In comparison to controls, tCr in these VOIs was lower in welders and patients with PD or HC. Serum concentrations of ferritin and Fe were associated with N-acetylaspartate, but in opposed directions. Higher R1 values in the GP correlated with lower neurometabolite concentrations, in particular tCr (exp(β)=0.87, p<0.01) and choline (exp(β)=0.84, p=0.04). R2* was positively associated with glutamate-glutamine and negatively with myo-inositol. CONCLUSIONS: Our results do not provide evidence that striatal and thalamic GABA differ between Mn-exposed workers, PD or HC patients, and controls. This may be due to the low exposure levels of the Mn-exposed workers and the challenges to detect small changes in GABA. Whereas Mn in blood was not associated with any neurometabolite content in these VOIs, a higher metal accumulation in the GP assessed with R1 correlated with generally lower neurometabolite concentrations

    Breathomics profiling of metabolic pathways affected by major depression: Possibilities and limitations

    Get PDF
    BackgroundMajor depressive disorder (MDD) is one of the most common psychiatric disorders with multifactorial etiologies. Metabolomics has recently emerged as a particularly potential quantitative tool that provides a multi-parametric signature specific to several mechanisms underlying the heterogeneous pathophysiology of MDD. The main purpose of the present study was to investigate possibilities and limitations of breath-based metabolomics, breathomics patterns to discriminate MDD patients from healthy controls (HCs) and identify the altered metabolic pathways in MDD.MethodsBreath samples were collected in Tedlar bags at awakening, 30 and 60 min after awakening from 26 patients with MDD and 25 HCs. The non-targeted breathomics analysis was carried out by proton transfer reaction mass spectrometry. The univariate analysis was first performed by T-test to rank potential biomarkers. The metabolomic pathway analysis and hierarchical clustering analysis (HCA) were performed to group the significant metabolites involved in the same metabolic pathways or networks. Moreover, a support vector machine (SVM) predictive model was built to identify the potential metabolites in the altered pathways and clusters. The accuracy of the SVM model was evaluated by receiver operating characteristics (ROC) analysis.ResultsA total of 23 differential exhaled breath metabolites were significantly altered in patients with MDD compared with HCs and mapped in five significant metabolic pathways including aminoacyl-tRNA biosynthesis (p = 0.0055), branched chain amino acids valine, leucine and isoleucine biosynthesis (p = 0.0060), glycolysis and gluconeogenesis (p = 0.0067), nicotinate and nicotinamide metabolism (p = 0.0213) and pyruvate metabolism (p = 0.0440). Moreover, the SVM predictive model showed that butylamine (p = 0.0005, pFDR=0.0006), 3-methylpyridine (p = 0.0002, pFDR = 0.0012), endogenous aliphatic ethanol isotope (p = 0.0073, pFDR = 0.0174), valeric acid (p = 0.005, pFDR = 0.0162) and isoprene (p = 0.038, pFDR = 0.045) were potential metabolites within identified clusters with HCA and altered pathways, and discriminated between patients with MDD and non-depressed ones with high sensitivity (0.88), specificity (0.96) and area under curve of ROC (0.96).ConclusionAccording to the results of this study, the non-targeted breathomics analysis with high-throughput sensitive analytical technologies coupled to advanced computational tools approaches offer completely new insights into peripheral biochemical changes in MDD

    Microgravity facilities for cold atom experiments

    Get PDF
    Microgravity platforms enable cold atom research beyond experiments in typical laboratories by removing restrictions due to the gravitational acceleration or compensation techniques. While research in space allows for undisturbed experimentation, technological readiness, availability and accessibility present challenges for experimental operation. In this work we focus on the main capabilities and unique features of ground-based microgravity facilities for cold atom research. A selection of current and future scientific opportunities and their high demands on the microgravity environment are presented, and some relevant ground-based facilities are discussed and compared. Specifically, we point out the applicable free fall times, repetition rates, stability and payload capabilities, as well as programmatic and operational aspects of these facilities. These are contrasted with the requirements of various cold atom experiments. Besides being an accelerator for technology development, ground-based microgravity facilities allow fundamental and applied research with the additional benefit of enabling hands-on access to the experiment for modifications and adjustments

    Trauma induces apoptosis in human thoracolumbar intervertebral discs

    Get PDF
    BACKGROUND: Vertebral fractures resulting from high energy trauma often comprise the risk of posttraumatic degenerative changes in the affected intervertebral discs (IVD). Particularly in conservatively treated patients, or in cases after implant removal of an exclusively posterior stabilization, consecutive disc degeneration and the associated functional losing of the spinal segment clearly represent detrimental treatment results. In this regard, apoptosis of IVD cells has been suggested to be involved in the critical changes of the extracellular matrix. METHODS: To investigate whether fractures of the vertebrae induce apoptosis in the affected IVD, disc tissue from patients (n = 17) undergoing open reduction and internal fixation of thoracolumbar spine fractures were analysed in regards to caspase activity, apoptosis-receptor expression levels and gene expression of apoptosis-regulating proteins such as Bax and Bcl-2. Healthy IVD tissue (n = 3) obtained from patients undergoing surgical resection of adjacent vertebrae were used as control samples. RESULTS: In contrast to healthy control IVD tissues, samples from traumatic thoracolumbar IVD showed positive TUNEL staining and a significant increase of caspase-3/7 activity. Interestingly, analyses of the initiator caspase-8 and -9 revealed significantly increased activation levels compared to control values, suggesting the coexistent activation of both the extrinsic (receptor-mediated) and intrinsic (mitochondria-mediated) apoptosis pathway. Accordingly, expression levels of the Fas receptor (FasR) mRNA were significantly increased. Although the TNF receptor I (TNFR I) was only slightly upregulated, corresponding TNFα from trauma IVD presented significantly increased mRNA expression values. Furthermore, traumatic IVD cells demonstrated significantly reduced expression of the mitochondria-bound anti-apoptotic Bcl-2, thereby maintaining baseline transcriptional levels of the pro-apoptotic Bax protein when compared to control IVD cells. CONCLUSION: Our data suggest that thoracolumbar fractures induce early caspase-dependent apoptosis in IVD cells of the affected intervertebral disc, in part, by downregulation of the anti-apoptotic protein Bcl-2 (intrinsic apoptosis pathway), as well as signalling via the death receptor complex (TNFR I and FasR)

    Mycobacteria Attenuate Nociceptive Responses by Formyl Peptide Receptor Triggered Opioid Peptide Release from Neutrophils

    Get PDF
    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, β-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients
    • …
    corecore