205 research outputs found

    Architecture of coatomer: Molecular characterization of delta-COP and protein interactions within the complex

    Get PDF
    Copyright © 2011 by The Rockefeller University Press.Coatomer is a cytosolic protein complex that forms the coat of COP I-coated transport vesicles. In our attempt to analyze the physical and functional interactions between its seven subunits (coat proteins, [COPs] alpha-zeta), we engaged in a program to clone and characterize the individual coatomer subunits. We have now cloned, sequenced, and overexpressed bovine alpha-COP, the 135-kD subunit of coatomer as well as delta-COP, the 57-kD subunit and have identified a yeast homolog of delta-COP by cDNA sequence comparison and by NH2-terminal peptide sequencing. delta-COP shows homologies to subunits of the clathrin adaptor complexes AP1 and AP2. We show that in Golgi-enriched membrane fractions, the protein is predominantly found in COP I-coated transport vesicles and in the budding regions of the Golgi membranes. A knock-out of the delta-COP gene in yeast is lethal. Immunoprecipitation, as well as analysis exploiting the two-hybrid system in a complete COP screen, showed physical interactions between alpha- and epsilon-COPs and between beta- and delta-COPs. Moreover, the two-hybrid system indicates interactions between gamma- and zeta-COPs as well as between alpha- and beta' COPs. We propose that these interactions reflect in vivo associations of those subunits and thus play a functional role in the assembly of coatomer and/or serve to maintain the molecular architecture of the complex.This work was supported by The Deutsche Forschungsgemeinschaft (SFB 352), the Human Frontier Science Program, and the Swiss National Science Foundation No. 31-43366.95

    Photophysics of phycoerythrocyanins from the cyanobacterium Westiellopsis prolifica studied by time-resolved fluorescence and coherent anti-Stokes Raman scattering spectroscopy

    Get PDF
    Three building blocks of the antenna complexes of the cyanobacterium Westiellopsis prolifica were studied: PEC(X), which is similar to the α-subunit of phycoerythrocyanin (PEC), trimers of PEC and monomers derived from these by deaggregation with KSCN. The fit of the fluorescence decay curve of PEC(X) requires at least four exponentials, although it supposedly contains only one chromophore. The coherent anti-Stokes Raman scattering (CARS) spectra indicate that the heterogeneity observed is due to geometrical isomers, which are in part generated by photoinduced processes. A similar heterogeneity in chromophore structure and properties is also found in the monomers, where four exponentials are needed to fit the fluorescence decay curve. As in trimers, there is a long-lived, low-amplitude component, which can be assigned to impurities and/or oxidation products. The energy transfer time between the two phyocyanobilin chromophores in the β-subunit is about 500 ps; the lifetime of the fluorescing β-chromophore is 1.5 ns. The phycoviolobilin chromophore in the α-subunit adopts different geometries characterized by fluorescence lifetimes of about 240 and 800 ps. No evidence was found for energy transfer between the α-chromophore and the β-chromophores. This energy transfer occurs in trimers on a time scale of less than 20 ps; the energy transfer time between the two different types of β-chromophore is about 250 ps and the lifetime of the terminal emitter is about 1.5 ns. The excited state kinetics are therefore similar to those of PEC trimers from Mastigocladus laminosus, as are the CARS spectra, indicating a similar chromophore—protein arrangement. In comparison with phycocyanin, the ordering of the excited states of chromophores β84 and β155 may be changed. Although PEC trimers of Westiellopsis prolifica show almost as good a photostability as trimers of Mastigocladus laminosus, monomers are so photolabile that no CARS spectra could be recorded

    Preoperative Imaging with [F-18]-Fluorocholine PET/CT in Primary Hyperparathyroidism

    Get PDF
    Primary hyperparathyroidism (pHPT) is a common endocrine disorder due to hyperfunctioning parathyroid glands. To date, the only curing therapy is surgical removal of the dysfunctional gland, making correct detection and localization crucial in order to perform a minimally invasive parathyroidectomy. F-18-Fluorocholine positron emission tomography/computed tomography (F-18-FCH PET/CT) has shown promising results for the detection of pHPT, suggesting superiority over conventional imaging with ultrasounds or scintigraphy. A total of 33 patients with pHPT who had negative or equivocal findings in conventional imaging received F-18-FCH PET/CT preoperatively and were retrospectively included. A pathological hyperfunctional parathyroid gland was diagnosed in 24 cases (positive PET, 72.7%), 4 cases showed equivocal choline uptake (equivocal PET, 12.1%), and in 5 cases, no enhanced choline uptake was evident (negative PET, 15.2%). Twelve of the twenty-four detected adenoma patients underwent surgery, and in all cases, a pathological parathyroid adenoma was resected at the site detected by PET/CT. Two of the six patients without pathological choline uptake who received a parathyroidectomy revealed no evidence of parathyroid adenoma tissue in the histopathological evaluation. This retrospective study analyzes F-18-FCH PET/CT in a challenging patient cohort with pHPT and negative or equivocal conventional imaging results and supports the use of F-18-FCH for the diagnosis of hyperfunctional parathyroid tissue, especially in this patient setting, with a 100% true positive and true negative detection rate. Our study further demonstrates the importance of F-18-FCH PET/CT for successful surgical guidance

    Cloning of a novel malignant melanoma-derived growth-regulatory protein, MIA

    Get PDF
    Growth and progression of malignant melanoma cells is influenced by a complex network of growth-stimulating and -inhibiting factors produced by both the tumor cells and the local environment. Here we report the purification and molecular cloning of a novel growth regulating protein, designated melanoma inhibitory activity (MIA) and provide a preliminary functional characterization. MIA is translated as a 131-amino acid precursor and processed into a mature 107-amino acid protein after cleavage of a putative secretion signal. A murine complementary DNA was isolated that encoded a MIA-protein with 88% amino acid identity. MIA is secreted into the culture supernatant by several malignant melanoma cell lines as an M(r) 11,000 autocrine growth factor and acts as a potent tumor cell growth inhibitor for malignant melanoma cells and some other neuroectodermal tumors, including gliomas. MIA has no homology to any other known protein and, therefore, represents a novel type of growth-regulatory factor. Furthermore, we describe a molecular approach to express functionally active MIA in Escherichia coli, which might be attractive as a future antitumor therapeutical substance

    Human plasma protein N-glycosylation

    Full text link

    Phytochemistry

    No full text
    Screening of 18 suspension plant cell cultures of taxonomically distant species revealed that a methyl jasmonate hydrolysing enzyme activity (0.21-5.67 pkat/mg) occurs in all species so far analysed. The methyl jasmonate hydrolysing esterase was purified from cell cultures of Lycopersicon esculentum using a five-step procedure including anion-exchange chromatography, gel-filtration and chromatography on hydroxylapatite. The esterase was purified 767-fold to give an almost homogenous protein in a yield of 2.2%. The native enzyme exhibited a M-r of 26 kDa (gel-filtration chromatography), which was similar to the M-r determined by SDS-PAGE and MALDI-TOF analysis (M-r of 28547 kDa). Enzyme kinetics revealed a K-m value of 15 muM and a V-max value of 7.97 nkat/mg, an pH optimum of 9.0 and a temperature optimum of 40 degreesC. The enzyme also efficiently hydrolyzed methyl esters of abscisic acid, indole-3-acetic acid, and fatty acids. In contrast, methyl esters of salicylic acid, benzoic acid and cinnamic acid were only poor substrates for the enzyme. N-Methylmaleimide, iodacetamide, bestatin and pepstatin (inhibitors of thiol-, metal- and carboxyproteases, respectively) did not inactivate the enzyme while a serine protease inhibitor, phenylmethylsulfonyl fluoride, at a concentration of 5 mM led to irreversible and complete inhibition of enzyme activity. Proteolysis of the pure enzyme with endoproteinase LysC revealed three peptide fragments with 11-14 amino acids. N-Terminal sequencing yielded an additional peptide fragment with 10 amino acids. Sequence alignment of these fragments showed high homologies to certain plant esterases and hydroxynitrile lyases that belong to the alpha/beta hydrolase fold protein superfamily. (C) 2002 Published by Elsevier Science Ltd
    corecore