331 research outputs found
Development and research methods of compression of complex signals based on optimal and suboptimalnoy processing phase response
The article provides further study of information possibilities phase response of seismic signals to improve resolution records in a thin-layered environment. In the paper, new algorithm of compression of complex signals based on optimal and sub optimal treatment of their phase response of proposed
Post-Newtonian extension of the Newton-Cartan theory
The theory obtained as a singular limit of General Relativity, if the
reciprocal velocity of light is assumed to tend to zero, is known to be not
exactly the Newton-Cartan theory, but a slight extension of this theory. It
involves not only a Coriolis force field, which is natural in this theory
(although not original Newtonian), but also a scalar field which governs the
relation between Newtons time and relativistic proper time. Both fields are or
can be reduced to harmonic functions, and must therefore be constants, if
suitable global conditions are imposed. We assume this reduction of
Newton-Cartan to Newton`s original theory as starting point and ask for a
consistent post-Newtonian extension and for possible differences to usual
post-Minkowskian approximation methods, as developed, for example, by
Chandrasekhar. It is shown, that both post-Newtonian frameworks are formally
equivalent, as far as the field equations and the equations of motion for a
hydrodynamical fluid are concerned.Comment: 13 pages, LaTex, to appear in Class. Quantum Gra
Несимметрично замещенные дифениловые эфиры как перспективные предшественники синтетических аналогов интерлейкина-4
Second harmonic generation on incommensurate structures: The case of multiferroic MnWO4
A comprehensive analysis of optical second harmonic generation (SHG) on an
incommensurate (IC) magnetically ordered state is presented using multiferroic
MnWO4 as model compound. Two fundamentally different SHG contributions coupling
to the primary IC magnetic order or to secondary commensurate projections of
the IC state, respectively, are distinguished. Whereas the latter can be
described within the formalism of the 122 commensurate magnetic point groups
the former involves a breakdown of the conventional macroscopic symmetry
analysis because of its sensitivity to the lower symmetry of the local
environment in a crystal lattice. Our analysis thus foreshadows the fusion of
the hitherto disjunct fields of nonlinear optics and IC order in
condensed-matter systems
Theory of the "honeycomb chain-channel" reconstruction of Si(111)3x1
First-principles electronic-structure methods are used to study a structural
model for Ag/Si(111)3x1 recently proposed on the basis of transmission electron
diffraction data. The fully relaxed geometry for this model is far more
energetically favorable than any previously proposed, partly due to the unusual
formation of a Si double bond in the surface layer. The calculated electronic
properties of this model are in complete agreement with data from
angle-resolved photoemission and scanning tunneling microscopy.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett (the ugly postscript
error on page 4 has now been repaired
Time-Independent Gravitational Fields
This article reviews, from a global point of view, rigorous results on time
independent spacetimes. Throughout attention is confined to isolated bodies at
rest or in uniform rotation in an otherwise empty universe. The discussion
starts from first principles and is, as much as possible, self-contained.Comment: 47 pages, LaTeX, uses Springer cl2emult styl
Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics
Roughness-insensitive and electrically controllable magnetization at the
(0001) surface of antiferromagnetic chromia is observed using magnetometry and
spin-resolved photoemission measurements and explained by the interplay of
surface termination and magnetic ordering. Further, this surface in placed in
proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across
the interface between chromia and Co/Pd induces an electrically controllable
exchange bias in the Co/Pd film, which enables a reversible isothermal (at room
temperature) shift of the global magnetic hysteresis loop of the Co/Pd film
along the magnetic field axis between negative and positive values. These
results reveal the potential of magnetoelectric chromia for spintronic
applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted
to Nature Material
The Diffusion Region in Collisionless Magnetic Reconnection
A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed
Pressure control of nonferroelastic ferroelectric domains in ErMnO3
Mechanical pressure controls the structural, electric, and magnetic order in solid-state systems, allowing tailoring of their physical properties. A well-established example is ferroelastic ferroelectrics, where the coupling between pressure and the primary symmetry-breaking order parameter enables hysteretic switching of the strain state and ferroelectric domain engineering. Here, we study the pressure-driven response in a nonferroelastic ferroelectric, ErMnO3, where the classical stress–strain coupling is absent and the domain formation is governed by creation–annihilation processes of topological defects. By annealing ErMnO3 polycrystals under variable pressures in the MPa regime, we transform nonferroelastic vortex-like domains into stripe-like domains. The width of the stripe-like domains is determined by the applied pressure as we confirm by three-dimensional phase field simulations, showing that pressure leads to oriented layer-like periodic domains. Our work demonstrates the possibility to utilize mechanical pressure for domain engineering in nonferroelastic ferroelectrics, providing a lever to control their dielectric and piezoelectric responses
- …
