2,286 research outputs found

    The Economic Impact of Connecticut's Information Technology Industry

    Get PDF
    information technology, economic impact, Tornqvist index

    The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980–1999

    Get PDF
    We present a description and evaluation of the Chemistry-Climate Model (CCM) LMDz-REPROBUS, which couples interactively the extended version of the Laboratoire de Météorologie Dynamique General Circulation Model (LMDz GCM) and the stratospheric chemistry module of the REactive Processes Ruling the Ozone BUdget in the Stratosphere (REPROBUS) model. The transient simulation evaluated here covers the period 1980&ndash;1999. The introduction of an interactive stratospheric chemistry module improves the model dynamical climatology, with a substantial reduction of the temperature biases in the lower tropical stratosphere. However, at high latitudes in the Southern Hemisphere, a negative temperature bias, that is already present in the GCM version, albeit with a smaller magnitude, leads to an overestimation of the ozone depletion and its vertical extent in the CCM. This in turn contributes to maintain low polar temperatures in the vortex, delay the break-up of the vortex and the recovery of polar ozone. The latitudinal and vertical variation of the mean age of air compares favourable with estimates derived from long-lived species measurements, though the model mean age of air is 1&ndash;3 years too young in the middle stratosphere. The model also reproduces the observed "tape recorder" in tropical total hydrogen (=H<sub>2</sub>O+2&times;CH<sub>4</sub>), but its propagation is about 30% too fast and its signal fades away slightly too quickly. The analysis of the global distributions of CH<sub>4</sub> and N<sub>2</sub>O suggests that the subtropical transport barriers are correctly represented in the simulation. LMDz-REPROBUS also reproduces fairly well most of the spatial and seasonal variations of the stratospheric chemical species, in particular ozone. However, because of the Antarctic cold bias, large discrepancies are found for most species at high latitudes in the Southern Hemisphere during the spring and early summer. In the Northern Hemisphere, polar ozone depletion and its variability are underestimated in the simulation

    On Minimum Violations Ranking in Paired Comparisons

    Full text link
    Ranking a set of objects from the most dominant one to the least, based on the results of paired comparisons, proves to be useful in many contexts. Using the rankings of teams or individuals players in sports to seed tournaments is an example. The quality of a ranking is often evaluated by the number of violations, cases in which an object is ranked lower than another that it has dominated in a comparison, that it contains. A minimum violations ranking (MVR) method, as its name suggests, searches specifically for rankings that have the minimum possible number of violations which may or may not be zero. In this paper, we present a method based on statistical physics that overcomes conceptual and practical difficulties faced by earlier studies of the problem.Comment: 10 pages, 10 figures; typos corrected (v2

    Laboratory test methods to determine the degradation of plastics in marine environmental conditions

    Get PDF
    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = −66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment
    • 

    corecore