182 research outputs found
Mapping the path to Cryogenic Atom Probe Tomography Analysis of biomolecules
The understanding of protein structure, folding, and interaction with other
proteins remains one of the grand challenges of modern biology. Tremendous
progress has been made thanks to X-ray- or electron-based techniques that have
provided atomic configurations of proteins, and their solvation shell. These
techniques though require a large number of similar molecules to provide an
average view, and lack detailed compositional information that might play a
major role in the biochemical activity of these macromolecules. Based on its
intrinsic performance and recent impact in materials science, atom probe
tomography (APT) has been touted as a potential novel tool to analyse
biological materials, including proteins. However, analysis of biomolecules in
their native, hydrated state by APT have not yet been routinely achieved, and
the technique's true capabilities remain to be demonstrated. Here, we present
and discuss systematic analyses of individual amino-acids in frozen aqueous
solutions on two different nanoporous metal supports across a wide range of
analysis conditions. Using a ratio of the molecular ions of water as a
descriptor for the conditions of electrostatic field, we study the
fragmentation and behavior of those amino acids. We discuss the importance
sample support, specimen preparation route, acquisition conditions and data
analysis, to pave the way towards establishing guidelines for cryo-APT analysis
of biomolecules
Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-β Variants and Structural Analysis by Solution NMR Spectroscopy
Alzheimer’s disease (AD) is the leading cause of dementia in the elderly and is characterized by memory loss and cognitive decline. Pathological hallmark of AD brains are intracellular neurofibrillary tangles and extracellular amyloid plaques. The major component of these plaques is the highly heterogeneous amyloid-β (Aβ) peptide, varying in length and modification. In recent years pyroglutamate-modified amyloid-β (pEAβ) peptides have increasingly moved into the focus since they have been described to be the predominant species of all N-terminally truncated Aβ. Compared to unmodified Aβ, pEAβ is known to show increased hydrophobicity, higher toxicity, faster aggregation and β-sheet stabilization and is more resistant to degradation. Nuclear magnetic resonance (NMR) spectroscopy is a particularly powerful method to investigate the conformations of pEAβ isoforms in solution and to study peptide/ligand interactions for drug development. However, biophysical characterization of pEAβ and comparison to its non-modified variant has so far been seriously hampered by the lack of highly pure recombinant and isotope-enriched protein. Here we present, to our knowledge, for the first time a reproducible protocol for the production of pEAβ from a recombinant precursor expressed in E. coli in natural isotope abundance as well as in uniformly [U-15N]- or [U-13C, 15N]-labeled form, with yields of up to 15 mg/l E. coli culture broth. The chemical state of the purified protein was evaluated by RP-HPLC and formation of pyroglutamate was verified by mass spectroscopy. The recombinant pyroglutamate-modified Aβ peptides showed characteristic sigmoidal aggregation kinetics as monitored by thioflavin-T assays. The quality and quantity of produced pEAβ40 and pEAβ42 allowed us to perform heteronuclear multidimensional NMR spectroscopy in solution and to sequence-specifically assign the backbone resonances under near-physiological conditions. Our results suggest that the presented method will be useful in obtaining cost-effective high-quality recombinant pEAβ40 and pEAβ42 for further physiological and biochemical studies
Analysis of the Bin1 SH3 interaction with peptides derived from the hepatitis C virus protein NS5A and c-Myc reveals that NS5A can competitively displace c-Myc in vitro
Severe liver damage like cirrhosis and hepatocellular carcinoma (HCC) can be caused by manifestation of the hepatitis C virus (HCV) infection. Constitutively activated c-Myc oncogene has been shown to contribute to the establishment of HCV-mediated HCC. Interestingly, only one of many isoforms of the tumor suppressor protein Bin1 (bridging integrator 1), Bin1+12A, contains an internal, canonical SH3 binding motif that recognizes its own SH3 domain. This leads to the inability of Bin1+12A to interact with c-Myc. The expression of the Bin1+12A isoform is a main phenotype in malignant melanoma cells. We suggest that also other mechanisms that disturb the interaction of Bin1 and c-Myc might have severe consequences since the latter is tightly regulated in healthy cells. The HCV nonstructural protein 5A (NS5A) plays a key role in virus replication and assembly. NS5A plays an intercepting role in several cellular pathways, which are linked to cell growth, cell cycle control, cell survival, cellular stress response, apoptosis as well as HCC. It is known that NS5A contains a highly conserved canonical, polyproline (PxxP) SH3-binding motif, which is located between its D2 and D3 domains. This PxxP motif was described to interact with the SH3 domain of Bin1. In addition to a biophysical analysis of the canonical binding between Bin1 SH3 and the PxxP motif of NS5A [1], we identified two additional low-affinity binding sites for non-canonical SH3 binding on NS5A [2]. The hypothesis underlying the work presented here is that viral NS5A is able to sequester cellular Bin1 from c-Myc
Liposome Reconstitution and Modulation of Recombinant Prenylated Human Rac1 by GEFs, GDI1 and Pak1
Small Rho GTPases are well known to regulate a variety of cellular processes by acting as molecular switches. The regulatory function of Rho GTPases is critically dependent on their posttranslational modification at the carboxyl terminus by isoprenylation and association with proper cellular membranes. Despite numerous studies, the mechanisms of recycling and functional integration of Rho GTPases at the biological membranes are largely unclear. In this study, prenylated human Rac1, a prominent member of the Rho family, was purified in large amount from baculovirus-infected Spodoptera frugiperda insect cells using a systematic detergent screening. In contrast to non-prenylated human Rac1 purified from Escherichia coli, prenylated Rac1 from insect cells was able to associate with synthetic liposomes and to bind Rho-specific guanine nucleotide dissociation inhibitor 1 (GDI1). Subsequent liposome reconstitution experiments revealed that GDI1 efficiently extracts Rac1 from liposomes preferentially in the inactive GDP-bound state. The extraction was prevented when Rac1 was activated to its GTP-bound state by Rac-specific guanine nucleotide exchange factors (GEFs), such as Vav2, Dbl, Tiam1, P-Rex1 and TrioN, and bound by the downstream effector Pak1. We found that dissociation of Rac1-GDP from its complex with GDI1 strongly correlated with two distinct activities of especially Dbl and Tiam1, including liposome association and the GDP/GTP exchange. Taken together, our results provided first detailed insights into the advantages of the in vitro liposome-based reconstitution system to study both the integration of the signal transducing protein complexes and the mechanisms of regulation and signaling of small GTPases at biological membranes
Competitive Mirror Image Phage Display Derived Peptide Modulates Amyloid Beta Aggregation and Toxicity
Alzheimer´s disease is the most prominent type of dementia and currently no causative treatment is available. According to recent studies, oligomeric species of the amyloid beta (Aβ) peptide appear to be the most toxic Aβ assemblies. Aβ monomers, however, may be not toxic per se and may even have a neuroprotective role. Here we describe a competitive mirror image phage display procedure that allowed us to identify preferentially Aβ1–42 monomer binding and thereby stabilizing peptides, which destabilize and thereby eliminate toxic oligomer species. One of the peptides, called Mosd1 (monomer specific d-peptide 1), was characterized in more detail. Mosd1 abolished oligomers from a mixture of Aβ1–42 species, reduced Aβ1–42 toxicity in cell culture, and restored the physiological phenotype in neuronal cells stably transfected with the gene coding for human amyloid precursor protein
Optimization of the All-D Peptide D3 for Aβ Oligomer Elimination
The aggregation of amyloid-β (Aβ) is postulated to be the crucial event in Alzheimer’s disease (AD). In particular, small neurotoxic Aβ oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized D-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric Aβ. The underlying hypothesis is that ligands bind monomeric Aβ and stabilize these species within the various equilibria with Aβ assemblies, leading ultimately to the elimination of Aβ oligomers. One of the hereby identified D-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i) inhibit the formation of Thioflavin T-positive fibrils; (ii) bind to Aβ monomers with micromolar affinities; (iii) eliminate Aβ oligomers; (iv) reduce Aβ-induced cytotoxicity; and (v) disassemble preformed Aβ aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded Aβ monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD
Preclinical Pharmacokinetic Studies of the Tritium Labelled D-Enantiomeric Peptide D3 Developed for the Treatment of Alzheimer´s Disease
Targeting toxic amyloid beta (Aβ) oligomers is currently a very attractive drug development strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s disease animal models. However, there is little information on the pharmacokinetic behaviour of D-enantiomeric peptides in general. Therefore, we conducted experiments with the tritium labelled D-peptide D3 (3H-D3) in mice with different administration routes to study its distribution in liver, kidney, brain, plasma and gastrointestinal tract, as well as its bioavailability by i.p. and p.o. administration. In addition, we investigated the metabolic stability in liver microsomes, mouse plasma, brain, liver and kidney homogenates, and estimated the plasma protein binding. Based on its high stability and long biological half-life, our pharmacokinetic results support the therapeutic potential of D-peptides in general, with D3 being a new promising drug candidate for Alzheimer´s disease treatment
Liposome Reconstitution and Modulation of Recombinant Prenylated Human Rac1 by GEFs, GDI1 and Pak1
- …
