126 research outputs found

    Transport properties of Layer-Antiferromagnet CuCrS2: A possible thermoelectric material

    Full text link
    The electrical, thermal conductivity and Seebeck coefficient of the quenched, annealed and slowly cooled phases of the layer compound CuCrS2 have been reported between 15K to 300K. We also confirm the antiferromagnetic transition at 40K in them by our magnetic measurements between 2K and 300K. The crystal flakes show a minimum around 100K in their in-plane resistance behavior. For the polycrystalline pellets the resistivity depends on their flaky texture and it attains at most 10 to 20 times of the room temperature value at the lowest temperature of measurement. The temperature dependence is complex and no definite activation energy of electronic conduction can be discerned. We find that the Seebeck coefficient is between 200-450 microV/K and is unusually large for the observed resistivity values of between 5-100 mOhm-cm at room temperature. The figure of merit ZT for the thermoelectric application is 2.3 for our quenched phases, which is much larger than 1 for useful materials. The thermal conductivity K is mostly due to lattice conduction and is reduced by the disorder in Cu- occupancy in our quenched phase. A dramatic reduction of electrical and thermal conductivity is found as the antiferromagnetic transition is approached from the paramagnetic region, and K subsequently rises in the ordered phase. We discuss the transport properties as being similar to a doped Kondo-insulator

    A rare case of abnormal uterine bleeding caused by cavernous hemangioma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Cavernous hemangiomas of the uterus are extremely rare, benign lesions. A survey of the current literature identified fewer than 50 cases of hemangioma of the uterus.</p> <p>Case presentation</p> <p>We report a case of cavernous hemangioma of the uterus in a 27-year-old Malay, para 1 woman who presented at our hospital with torrential vaginal bleeding having been transferred by land ambulance from a district hospital 30 minutes away. 11 weeks previously she had an urgent cesarean section at our hospital. She had to undergo a hysterectomy to control her bleeding after other measures were unsuccessful. A histopathological report confirmed a diffuse ramifying hemangioma of the cervix and uterus with left hematosalpinx.</p> <p>Conclusion</p> <p>Most ramifying hemangioma lesions are asymptomatic and are found incidentally, but sometimes they may cause abnormal vaginal bleeding and hence should be included in the differential diagnosis of patients with vaginal bleeding. Hysterectomy is the primary mode of treatment in most symptomatic cases.</p

    Pregnancy related back pain, is it related to aerobic fitness? A longitudinal cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low back pain with onset during pregnancy is common and approximately one out of three women have disabling pain. The pathogenesis of the pain condition is uncertain and there is no information on the role of physical fitness. Whether poorer physical conditioning is a cause or effect of back pain is also disputed and information from prospective studies needed.</p> <p>Methods</p> <p>A cohort of pregnant women, recruited from maternal health care centers in central Sweden, were examined regarding estimated peak oxygen uptake by cycle ergometer test in early pregnancy, reported physical activity prior to pregnancy, basic characteristics, back pain during pregnancy and back pain postpartum.</p> <p>Results</p> <p>Back pain during the current pregnancy was reported by nearly 80% of the women. At the postpartum appointment this prevalence was 40%. No association was displayed between estimated peak oxygen uptake and incidence of back pain during and after pregnancy, adjusted for physical activity, back pain before present pregnancy, previous deliveries, age and weight. A significant inverse association was found between estimated peak oxygen uptake and back pain intensity during pregnancy and a direct association post partum, in a fully adjusted multiple linear regression analysis.</p> <p>Conclusions</p> <p>Estimated peak oxygen uptake and reported physical activity in early pregnancy displayed no influence on the onset of subsequent back pain during or after pregnancy, where the time sequence support the hypothesis that poorer physical deconditioning is not a cause but a consequence of the back pain condition. The mechanism for the attenuating effect of increased oxygen uptake on back pain intensity is uncertain.</p

    Microstructures and Thermoelectric Properties of Sintered Misfit-Layered Cobalt Oxide

    Get PDF
    Misfit-layered cobalt oxide Ca3Co4O9 is considered to be a prospective material for thermoelectric conversion. The thermoelectric properties are anisotropic owing to its anisotropic crystal structure. The crystal has preferred thermoelectric properties along the a-b plane. Therefore, the thermoelectric properties are improved and controlled by the degree of orientation of the sintered sample. In the present work, Sr-doped misfit cobalt oxide Ca2.7Sr0.3Co4O9 was prepared by solid-phase reaction, followed by uniaxial compression molding and sintering at 1173 K. The Seebeck coefficient α, electrical resistivity ρ, and dimensionless figure of merit ZT were measured as a function of the compression pressure applied in the uniaxial molding. α, ρ, and ZT as functions of the degree of orientation and the relative density are experimentally clarified and explained by calculations using the compound model

    Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films

    Get PDF
    The discovery of SnSe single crystals with record high thermoelectric efficiency along the b-axis has led to the search for ways to synthesize polycrystalline SnSe with similar efficiencies. However, due to weak texturing and difficulties in doping, such high thermoelectric efficiencies have not been realized in polycrystals or thin films. Here, we show that highly textured and hole doped SnSe thin films with thermoelectric power factors at the single crystal level can be prepared by solution process. Purification step in the synthetic process produced a SnSe-based chalcogenidometallate precursor, which decomposes to form the SnSe2 phase. We show that the strong textures of the thin films in the b???c plane originate from the transition of two dimensional SnSe2 to SnSe. This composition change-driven transition offers wide control over composition and doping of the thin films. Our optimum SnSe thin films exhibit a thermoelectric power factor of 4.27 ??W cm???1 K???2
    corecore