87 research outputs found

    Rational Herding in Microloan Markets

    Get PDF
    Microloan markets allow individual borrowers to raise funding from multiple individual lenders. We use a unique panel data set that tracks the funding dynamics of borrower listings on Prosper.com, the largest microloan market in the United States. We find evidence of rational herding among lenders. Well-funded borrower listings tend to attract more funding after we control for unobserved listing heterogeneity and payoff externalities. Moreover, instead of passively mimicking their peers (irrational herding), lenders engage in active observational learning (rational herding); they infer the creditworthiness of borrowers by observing peer lending decisions and use publicly observable borrower characteristics to moderate their inferences. Counterintuitively, obvious defects (e.g., poor credit grades) amplify a listing's herding momentum, as lenders infer superior creditworthiness to justify the herd. Similarly, favorable borrower characteristics (e.g., friend endorsements) weaken the herding effect, as lenders attribute herding to these observable merits. Follow-up analysis shows that rational herding beats irrational herding in predicting loan performance

    A Soluble Guanylate Cyclase–Dependent Mechanism Is Involved in the Regulation of Net Hepatic Glucose Uptake by Nitric Oxide in Vivo

    Get PDF
    OBJECTIVE We previously showed that elevating hepatic nitric oxide (NO) levels reduced net hepatic glucose uptake (NHGU) in the presence of portal glucose delivery, hyperglycemia, and hyperinsulinemia. The aim of the present study was to determine the role of a downstream signal, soluble guanylate cyclase (sGC), in the regulation of NHGU by NO. RESEARCH DESIGN AND METHODS Studies were performed on 42-h–fasted conscious dogs fitted with vascular catheters. At 0 min, somatostatin was given peripherally along with 4× basal insulin and basal glucagon intraportally. Glucose was delivered at a variable rate via a leg vein to double the blood glucose level and hepatic glucose load throughout the study. From 90 to 270 min, an intraportal infusion of the sGC inhibitor 1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) was given in −sGC (n = 10) and −sGC/+NO (n = 6), whereas saline was given in saline infusion (SAL) (n = 10). The −sGC/+NO group also received intraportal SIN-1 (NO donor) to elevate hepatic NO from 180 to 270 min. RESULTS In the presence of 4× basal insulin, basal glucagon, and hyperglycemia (2× basal ), inhibition of sGC in the liver enhanced NHGU (mg/kg/min; 210–270 min) by ∼55% (2.9 ± 0.2 in SAL vs. 4.6 ± 0.5 in −sGC). Further elevating hepatic NO failed to reduce NHGU (4.5 ± 0.7 in −sGC/+NO). Net hepatic carbon retention (i.e., glycogen synthesis; mg glucose equivalents/kg/min) increased to 3.8 ± 0.2 in −sGC and 3.8 ± 0.4 in −sGC/+NO vs. 2.4 ± 0.2 in SAL (P < 0.05). CONCLUSIONS NO regulates liver glucose uptake through a sGC-dependent pathway. The latter could be a target for pharmacologic intervention to increase meal-associated hepatic glucose uptake in individuals with type 2 diabetes

    Caracol, Belize, and Changing Perceptions of Ancient Maya Society

    Full text link

    Decreased basal, noninsulin-stimulated glucose uptake and metabolism by skeletal soleus muscle isolated from obese-hyperglycemic (ob/ob) mice.

    No full text
    Insulin resistance of diaphragms of ob/ob mice has been repeatedly demonstrated previously both in vitro and in vivo. In the present study, transport and metabolism of glucose with and without insulin stimulation were compared in a skeletal muscle more likely than diaphragm or heart to be representative of the overall striated muscle mass, i.e. isolated soleus muscle. Compared with soleus muscle from lean controls, unstimulated lactate release in the presence of exogenous glucose was depressed from 16.2 to 12.3 nmol/60 min per mg wet wt in soleus from ob/ob mutants; glycolysis was decreased from 6.6 to 3.7 and [14C]glucose oxidation to 14CO2 from 0.90 to 0.33 nmol glucose/60 min per mg wet wt. Uptake of 2-deoxyglucose (2-DOG), both with and without insulin, was very much less for soleus from ob/ob than from lean mice, at 2-DOG concentrations ranging from 0.1 to 10 mM, and in mice of 6-15 wk. When 2-DOG concentration was 1 mM, its basal uptake was 0.53 nmol/30 min per mg wet wt for soleus of ob/ob as against 0.96 for soleus of lean mice. The absolute increment due to 1 mU/ml insulin was 0.49 in muscle of ob/ob as against 1.21 in that of lean mice. When the resistance to insulin action was decreased by pretreatment in vivo by either streptozotocin injection or fasting, the decreased basal 2-DOG uptake of subsequently isolated soleus muscle was not improved. Inhibition of endogenous oxidation of fatty acids by 2-bromostearate, while greatly increasing 14CO2 production from [14C]glucose, did not affect basal [5-3H]glucose metabolism or 2-DOG uptake. It is suggested that transport and/or phosphorylation of glucose under basal, unstimulated conditions are depressed in soleus muscle of ob/ob mice, whether or not resistance to insulin and hyperinsulinemia are also present. Although the origin of the decreased basal glucose uptake remains unknown it might be related to a similar decrease in basal glucose uptake by ventromedial hypothalamic cells, an event presumably resulting in a tendency to hyperphagia. Decreased basal glucose uptake by soleus muscle of ob/ob mice might explain the hyperglycemia, and hence partly the hyperinsulinemia and excessive fat deposition of those animals
    corecore