184 research outputs found

    Direct and indirect effect of the COVID-19 pandemic on patients with cardiomyopathy

    Get PDF
    Objectives: (i) To evaluate the prevalence and hospitalisation rate of COVID-19 infections amongst patients with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) in the Royal Brompton & Harefield Hospital Cardiovascular Research Centre (RBHH CRC) Biobank. (ii) To evaluate the indirect impact of the pandemic on patients with cardiomyopathy through the Heart Hive COVID-19 study. (iii) To assess the impact of the pandemic on national cardiomyopathy-related hospital admissions. Methods: (i) 1,236 patients (703 DCM, 533 HCM) in the RBHH CRC Biobank were assessed for COVID-19 infections and hospitalisations; ii) 207 subjects (131 cardiomyopathy, 76 without heart disease) in the Heart Hive COVID-19 study completed online surveys evaluating physical health, psychological wellbeing, and behavioural adaptations during the pandemic; (iii) 11,447 cardiomyopathy-related hospital admissions across NHS England were studied from NHS Digital Hospital Episode Statistics over 2019-2020. Results: A comparable proportion of patients with cardiomyopathy in the RBHH CRC Biobank had tested positive for COVID-19 compared with the UK population (1.1% vs 1.6%, p=0.14), but a higher proportion of those infected were hospitalised (53.8% vs 16.5%, p=0.002). In the Heart Hive COVID-19 study, more patients with cardiomyopathy felt their physical health had deteriorated due to the pandemic than subjects without heart disease (32.3% vs 13.2%, p=0.004) despite only 4.6% of the cardiomyopathy cohort reporting COVID-19 symptoms. A 17.9% year-on-year reduction in national cardiomyopathy-related hospital admissions was observed in 2020. Conclusion: Patients with cardiomyopathy had similar reported rates of testing positive for COVID-19 to the background population, but those with test-proven infection were hospitalised more frequently. Deterioration in physical health amongst patients could not be explained by COVID-19 symptoms, inferring a significant contribution of the indirect consequences of the pandemic

    Osteoprotegerin and Myocardial Fibrosis in Patients with Aortic Stenosis

    Get PDF
    Left ventricular myocardial fibrosis in patients with aortic stenosis (AS) confers worse prognosis. Plasma osteoprotegerin (OPG), a cytokine from the TNF receptor family, correlates with the degree of valve calcification in AS, reflecting the activity of the tissue RANKL/RANK/OPG (receptor activator of nuclear factor κΒ ligand/RANK/osteoprotegerin) axis, and is associated with poorer outcomes in AS. Its association with myocardial fibrosis is unknown. We hypothesised that OPG levels would reflect the extent of myocardial fibrosis in AS. We included 110 consecutive patients with AS who had undergone late-gadolinium contrast enhanced cardiovascular magnetic resonance (LGE-CMR). Patients were characterised according to pattern of fibrosis (no fibrosis, midwall fibrosis, or chronic myocardial infarction fibrosis). Serum OPG was measured with ELISA and compared between groups defined by valve stenosis severity. Some 36 patients had no fibrosis, 38 had midwall fibrosis, and 36 had chronic infarction. Patients with midwall fibrosis did not have higher levels of OPG compared to those without fibrosis (6.78 vs. 5.25 pmol/L, p = 0.12). There was no difference between those with midwall or chronic myocardial infarction fibrosis (6.78 vs. 6.97 pmol/L, p = 0.27). However, OPG levels in patients with chronic myocardial infarction fibrosis were significantly higher than those without fibrosis (p = 0.005)

    Phenotype, outcomes and natural history of early-stage non-ischaemic cardiomyopathy

    Get PDF
    Aims To characterize the phenotype, clinical outcomes and rate of disease progression in patients with early-stage non-ischaemic cardiomyopathy (early-NICM). Methods and results We conducted a prospective observational cohort study of patients with early-NICM assessed by late gadolinium enhancement cardiovascular magnetic resonance (CMR). Cases were classified into the following subgroups: isolated left ventricular dilatation (early-NICM H−/D+), non-dilated left ventricular cardiomyopathy (early-NICM H+/D−), or early dilated cardiomyopathy (early-NICM H+/D+). Clinical follow-up for major adverse cardiovascular events (MACE) included non-fatal life-threatening arrhythmia, unplanned cardiovascular hospitalization or cardiovascular death. A subset of patients (n = 119) underwent a second CMR to assess changes in cardiac structure and function. Of 254 patients with early-NICM (median age 46 years [interquartile range 36–58], 94 [37%] women, median left ventricular ejection fraction [LVEF] 55% [52–59]), myocardial fibrosis was present in 65 (26%). There was no difference in the prevalence of fibrosis between subgroups (p = 0.90), however fibrosis mass was lowest in early-NICM H−/D+, higher in early-NICM H+/D− and highest in early-NICM H+/D+ (p = 0.03). Over a median follow-up of 7.9 (5.5–10.0) years, 28 patients (11%) experienced MACE. Non-sustained ventricular tachycardia (hazard ratio [HR] 5.1, 95% confidence interval [CI] 2.36–11.00, p < 0.001), myocardial fibrosis (HR 3.77, 95% CI 1.73–8.20, p < 0.001) and diabetes mellitus (HR 5.12, 95% CI 1.73–15.18, p = 0.003) were associated with MACE in a multivariable model. Only 8% of patients progressed from early-NICM to dilated cardiomyopathy with LVEF <50% over a median of 16 (11–34) months. Conclusion Early-NICM is not benign. Fibrosis develops early in the phenotypic course. In-depth characterization enhances risk stratification and might aid clinical management

    Variant location is a novel risk factor for individuals with arrhythmogenic cardiomyopathy due to a desmoplakin (DSP) truncating variant.

    Get PDF
    BACKGROUND: Truncating variants in desmoplakin (DSPtv) are an important cause of arrhythmogenic cardiomyopathy; however the genetic architecture and genotype-specific risk factors are incompletely understood. We evaluated phenotype, risk factors for ventricular arrhythmias, and underlying genetics of DSPtv cardiomyopathy. METHODS: Individuals with DSPtv and any cardiac phenotype, and their gene-positive family members were included from multiple international centers. Clinical data and family history information were collected. Event-free survival from ventricular arrhythmia was assessed. Variant location was compared between cases and controls, and literature review of reported DSPtv performed. RESULTS: There were 98 probands and 72 family members (mean age at diagnosis 43±8 years, 59% women) with a DSPtv, of which 146 were considered clinically affected. Ventricular arrhythmia (sudden cardiac arrest, sustained ventricular tachycardia, appropriate implantable cardioverter defibrillator therapy) occurred in 56 (33%) individuals. DSPtv location and proband status were independent risk factors for ventricular arrhythmia. Further, gene region was important with variants in cases (cohort n=98; Clinvar n=167) more likely to occur in the regions resulting in nonsense mediated decay of both major DSP isoforms, compared with n=124 genome aggregation database control variants (148 [83.6%] versus 29 [16.4%]; P<0.0001). CONCLUSIONS: In the largest series of individuals with DSPtv, we demonstrate that variant location is a novel risk factor for ventricular arrhythmia, can inform variant interpretation, and provide critical insights to allow for precision-based clinical management

    Comprehensive phenotypic characterization of late gadolinium enhancement predicts sudden cardiac death in coronary artery disease

    Get PDF
    Background Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) offers the potential to noninvasively characterize the phenotypic substrate for sudden cardiac death (SCD). Objectives The authors assessed the utility of infarct characterization by CMR, including scar microstructure analysis, to predict SCD in patients with coronary artery disease (CAD). Methods Patients with stable CAD were prospectively recruited into a CMR registry. LGE quantification of core infarction and the peri-infarct zone (PIZ) was performed alongside computational image analysis to extract morphologic and texture scar microstructure features. The primary outcome was SCD or aborted SCD. Results Of 437 patients (mean age: 64 years; mean left ventricular ejection fraction [LVEF]: 47%) followed for a median of 6.3 years, 49 patients (11.2%) experienced the primary outcome. On multivariable analysis, PIZ mass and core infarct mass were independently associated with the primary outcome (per gram: HR: 1.07 [95% CI: 1.02-1.12]; P = 0.002 and HR: 1.03 [95% CI: 1.01-1.05]; P = 0.01, respectively), and the addition of both parameters improved discrimination of the model (Harrell’s C-statistic: 0.64-0.79). PIZ mass, however, did not provide incremental prognostic value over core infarct mass based on Harrell’s C-statistic or risk reclassification analysis. Severely reduced LVEF did not predict the primary endpoint after adjustment for scar mass. On scar microstructure analysis, the number of LGE islands in addition to scar transmurality, radiality, interface area, and entropy were all associated with the primary outcome after adjustment for severely reduced LVEF and New York Heart Association functional class of >1. No scar microstructure feature remained associated with the primary endpoint when PIZ mass and core infarct mass were added to the regression models. Conclusions Comprehensive LGE characterization independently predicted SCD risk beyond conventional predictors used in implantable cardioverter-defibrillator (ICD) insertion guidelines. These results signify the potential for a more personalized approach to determining ICD candidacy in CAD

    Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica)

    Get PDF
    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet
    • …
    corecore