6 research outputs found

    G1m1 predominance of intrathecal virus-specific antibodies in multiple sclerosis

    Get PDF
    We have previously shown that plasmablasts of the G1m1 allotype of IgG1 are selectively enriched in the cerebrospinal fluid of G1m1/G1m3 heterozygous patients with multiple sclerosis, whereas both allotypes are equally used in neuroborreliosis. Here, we demonstrate a strong preference for the G1m1 allotype in the intrathecal humoral immune responses against measles, rubella, and varicella zoster virus in G1m1/G1m3 heterozygous multiple sclerosis patients. Conversely, intrathecally synthesized varicella zoster virus‐specific IgG1 in varicella zoster virus meningoencephalitis comprised both allotypes. This implies that G1m1 B cells are selected to the central nervous system of multiple sclerosis patients regardless of specificity and suggests that an antigen‐independent mechanism could drive the intrathecal humoral immune response.publishedVersio

    High-throughput sequencing of immune repertoires in multiple sclerosis.

    No full text
    T cells and B cells are crucial in the initiation and maintenance of multiple sclerosis (MS), and the activation of these cells is believed to be mediated through specific recognition of antigens by the T- and B-cell receptors. The antigen receptors are highly polymorphic due to recombination (T- and B-cell receptors) and mutation (B-cell receptors) of the encoding genes, which can therefore be used as fingerprints to track individual T- and B-cell clones. Such studies can shed light on mechanisms driving the immune responses and provide new insights into the pathogenesis. Here, we summarize studies that have explored the T- and B-cell receptor repertoires using earlier methodological approaches, and we focus on how high-throughput sequencing has provided new knowledge by surveying the immune repertoires in MS in even greater detail and with unprecedented depth

    G1m1 predominance of intrathecal virus-specific antibodies in multiple sclerosis

    Get PDF
    We have previously shown that plasmablasts of the G1m1 allotype of IgG1 are selectively enriched in the cerebrospinal fluid of G1m1/G1m3 heterozygous patients with multiple sclerosis, whereas both allotypes are equally used in neuroborreliosis. Here, we demonstrate a strong preference for the G1m1 allotype in the intrathecal humoral immune responses against measles, rubella, and varicella zoster virus in G1m1/G1m3 heterozygous multiple sclerosis patients. Conversely, intrathecally synthesized varicella zoster virus‐specific IgG1 in varicella zoster virus meningoencephalitis comprised both allotypes. This implies that G1m1 B cells are selected to the central nervous system of multiple sclerosis patients regardless of specificity and suggests that an antigen‐independent mechanism could drive the intrathecal humoral immune response

    Human cysteine cathepsins degrade immunoglobulin G in vitro in a predictable manner

    No full text
    Cysteine cathepsins are critical components of the adaptive immune system involved in the generation of epitopes for presentation on human leukocyte antigen (HLA) molecules and have been implicated in degradation of autoantigens. Immunoglobulin variable regions with somatic mutations and random complementarity region 3 amino acid composition are inherently immunogenic. T cell reactivity towards immunoglobulin variable regions has been investigated in relation to specific diseases, as well as reactivity to therapeutic monoclonal antibodies. Yet, how the immunoglobulins, or the B cell receptors, are processed in endolysosomal compartments of professional antigen presenting cells has not been described in detail. Here we present in silico and in vitro experimental evidence suggesting that cysteine cathepsins S, L and B may have important roles in generating peptides fitting HLA class II molecules, capable of being presented to T cells, from monoclonal antibodies as well as from central nervous system proteins including a well described autoantigen. By combining neural net models with in vitro proteomics experiments, we further suggest how such degradation can be predicted, how it fits with available cellular models, and that it is immunoglobulin heavy chain variable family dependent. These findings are relevant for biotherapeutic drug design as well as to understand disease development. We also suggest how these tools can be improved, including improved machine learning methodology

    Selective intrathecal enrichment of G1m1-positive B cells in multiple sclerosis

    Get PDF
    Immunoglobulin gamma (IgG) heavy chain genes are associated with susceptibility to multiple sclerosis (MS) and IgG levels in the cerebrospinal fluid (CSF). However, how these variants are implicated in disease mechanisms remains unknown. Here, we show that proliferating plasmablasts expressing the G1m1 allotype of IgG1 are selectively enriched in CSF of G1m1/G1m3 heterozygous MS patients, whereas plasmablasts expressing either G1m1 or G1m3 are evenly distributed in blood. Moreover, there was a preferential intrathecal synthesis of oligoclonal IgG1 of the G1m1 allotype in heterozygous patients, whereas controls with Lyme neuroborreliosis displayed oligoclonal IgG1 of both allotypes. This points to a disease-specific mechanism involved in B-cell establishment within the central nervous system in MS

    In silico prediction analysis of idiotope-driven T-B cell collaboration in multiple sclerosis

    No full text
    Memory B cells acting as antigen-presenting cells are believed to be important in multiple sclerosis (MS), but the antigen they present remains unknown. We hypothesized that B cells may activate CD4+ T cells in the central nervous system of MS patients by presenting idiotopes from their own immunoglobulin variable regions on human leukocyte antigen (HLA) class II molecules. Here, we use bioinformatics prediction analysis of B cell immunoglobulin variable regions from 11 MS patients and 6 controls with other inflammatory neurological disorders (OINDs), to assess whether the prerequisites for such idiotope-driven T–B cell collaboration are present. Our findings indicate that idiotopes from the complementarity determining region (CDR) 3 of MS patients on average have high predicted affinities for disease associated HLA-DRB1*15:01 molecules and are predicted to be endosomally processed by cathepsin S and L in positions that allows such HLA binding to occur. Additionally, complementarity determining region 3 sequences from cerebrospinal fluid (CSF) B cells from MS patients contain on average more rare T cell-exposed motifs that could potentially escape tolerance and stimulate CD4+ T cells than CSF B cells from OIND patients. Many of these features were associated with preferential use of the IGHV4 gene family by CSF B cells from MS patients. This is the first study to combine high-throughput sequencing of patient immune repertoires with large-scale prediction analysis and provides key indicators for future in vitro and in vivo analyses
    corecore