24 research outputs found

    Electron microscopy methods for space-, energy-, and time-resolved plasmonics

    No full text
    Nanoscale plasmonic systems combine the advantages of optical frequencies with those of small spatial scales, circumventing the limitations of conventional photonic systems by exploiting the strong field confinement of surface plasmons. As a result of this miniaturization to the nanoscale, electron microscopy techniques are the natural investigative methods of choice. Recent years have seen the development of a number of electron microscopy techniques that combine the use of electrons and photons to enable unprecedented views of surface plasmons in terms of combined spatial, energy, and time resolution. This review aims to provide a comparative survey of these different approaches from an experimental viewpoint by outlining their respective experimental domains of suitability and highlighting their complementary strengths and limitations as applied to plasmonics in particular

    Seeing And Measuring In Colours: Electron Microscopy And Spectroscopies Applied To Nano-optics

    No full text
    Over the past ten years, Scanning Transmission Electron Microscopes (STEM) fitted with Electron Energy Loss Spectroscopy (EELS) and/or Cathodoluminescence (CL) spectroscopy have demonstrated to be essential tools for probing the optical properties of nano-objects at sub-wavelength scales. Thanks to the possibility of measuring them at a nanometer scale in parallel to the determination of the structure and morphology of the object of interest, new challenging experimental and theoretical horizons have been unveiled. As regards optical properties of metallic nanoparticles, surface plasmons have been mapped at a scale unimaginable only a few years ago, while the relationship between the energy levels and the size of semiconducting nanostructures a few atomic layers thick could directly be measured. This paper reviews some of these highly stimulating recent developments. © 2013 AcadĂ©mie des sciences.1502/03/15158175Rittweger, E., Han, K.Y., Irvine, S.E., Eggeling, C., Hell, S.W., Sted microscopy reveals crystal colour centres with nanometric resolution (2009) Nat. Photonics, 3 (3), pp. 144-147Douillard, L., Charra, F., Korczak, Z., Bachelot, R., Kostcheev, S., Lerondel, G., Adam, P.M., Royer, P., Short range plasmon resonators probed by photoemission electron microscopy (2008) Nano Lett., 8 (3), pp. 935-940de Abajo, F.J.G., Optical excitations in electron microscopy (2010) Rev. Modern Phys., 82, pp. 209-275Bosman, M., Keast, V.J., Garcia-Munoz, J.L., D'alfonso, A.J., Findlay, S.D., Allen, L.J., Two-dimensional mapping of chemical information at atomic resolution (2007) Phys. Rev. Lett., 99 (8), p. 086102Torres-Pardo, A., Gloter, A., Zubko, P., NoĂ©mie, J., CĂ©line, L., Colliex, C., Triscone, J.-M., StĂ©phan, O., Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale (2011) Phys. Rev. B, 84, p. 220102Gloter, A., Douiri, A., Tence, M., Colliex, C., Improving energy resolution of EELS spectra: an alternative to the monochromator solution (2003) Ultramicroscopy, 96 (3-4), pp. 385-400Nelayah, J., Kociak, M., StĂ©phan, O., de Abajo, F.J.G., TencĂ©, M., Henrard, L., Taverna, D., Colliex, C., Mapping surface plasmons on a single metallic nanoparticle (2007) Nat. Phys., 3 (5), pp. 348-353N'Gom, M., Ringnalda, J., Mansfield, J.F., Agarwal, A., Kotov, N., Zaluzec, N.J., Norris, T.B., Single particle plasmon spectroscopy of silver nanowires and gold nanorods (2008) Nano Lett., 8 (10), pp. 3200-3204Rossouw, D., Botton, G.A., Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding (2013) Phys. Rev. Lett., 110 (6), p. 066801Merano, M., Sonderegger, S., Crottini, A., Collin, S., Renucci, P., Pelucchi, E., Malko, A., Ganiere, J.D., Probing carrier dynamics in nanostructures by picosecond cathodoluminescence (2005) Nature, 438 (7067), pp. 479-482Vesseur, E.J.R., de Abajo, F.J.G., Polman, A., Modal decomposition of surface-plasmon whispering gallery resonators (2009) Nano Lett., 9 (9), pp. 3147-3150Willems, B., Tallaire, A., Barjon, J., Exploring the origin and nature of luminescent regions in CVD synthetic diamond (2011) Gems Gemol., 47 (3), pp. 202-207Strunk, H.P., Albrecht, M., Scheel, H., Cathodoluminescence in transmission electron microscopy (2006) J. Microsc., 224, pp. 79-85Lim, S.K., Brewster, M., Qian, F., Li, Y., Lieber, C.M., Gradecak, S., Direct correlation between structural and optical properties of III-V nitride nanowire heterostructures with nanoscale resolution (2009) Nano Lett., 9 (11), pp. 3940-3944Zagonel, L.F., Mazzucco, S., Tence, M., March, K., Bernard, R., Laslier, B., Jacopin, G., Kociak, M., Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure (2011) Nano Lett., 11 (2), pp. 568-573Jeanguillaume, C., Colliex, C., Spectrum-image: The next step in EELS digital acquisition and processing (1989) Ultramicroscopy, 28 (1-4), pp. 252-257Colliex, C., TencĂ©, M., LefĂšvre, E., Mory, C., Gu, H., Bouchetand, D., Jeanguillaume, C., Electron-energy-loss spectroscopy mapping (1994) Mikrochim. Acta, 71, pp. 114-115Kociak, M., StĂ©phan Walls, M.O., Colliex, C., (2011) Spatially Resolved EELS: The Spectrum-Imaging Technique and Its Applications, p. 163. , Springer, Chapter 4Nelayah, J., Gu, J., Sigle, W., Koch, C.T., Pastoriza-Santos, I., Liz-Marzan, L.M., van Aken, P.A., Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss eftem imaging (2009) Opt. Lett., 34 (7), pp. 1003-1005Schaffer, B., Grogger, W., Kothleitner, G., Hofer, F., Comparison of eftem and stem eels plasmon imaging of gold nanoparticles in a monochromated tem (2010) Ultramicroscopy, 110 (8), pp. 1087-1093Gu, L., Sigle, W., Koch, C.T., Ogut, B., van Aken, P.A., Talebi, N., Vogelgesang, R., Mao, J., Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets (2011) Phys. Rev. B, 83 (19), p. 195433Schaffer, B., Kothleitner, G., Grogger, W., Eftem spectrum imaging at high-energy resolution (2006) Ultramicroscopy, 106 (11-12), pp. 1129-1138Tizei, L.H.G., Kociak, M., Spatially resolved quantum nano-optics of single photons using an electron microscope (2013) Phys. Rev. Lett., 110 (15), p. 153604Ritchie, R.H., Plasma losses by fast electrons in thin films (1957) Phys. Rev., 106, pp. 874-881Lucas, A.A., Kartheuser, E., Energy-loss spectrum of fast electrons in a dielectric slab. I. Nonretarded losses and Cherenkov bulk loss (1970) Phys. Rev. B, 1, pp. 3588-3598Ferrell, T.L., Echenique, P.M., Generation of surface excitations on dielectric spheres by an external electron beam (1985) Phys. Rev. Lett., 55, pp. 1526-1529Zabala, N., Rivacoba, A., Echenique, P.M., Energy loss of electrons travelling through cylindrical holes (1989) Surf. Sci., 209, pp. 465-480Taverna, D., Kociak, M., Charbois, V., Henrard, L., Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube (2002) Phys. Rev. B, 66 (23), p. 235419Garcia de Abajo, F.J., Relativistic energy loss induced photon emission in the interaction of a dielectric sphere with an external electron beam (1999) Phys. Rev. B, 59, pp. 3095-3107Yamamoto, N., Araya, K., de Abajo, F.J.G., Photon emission from silver particles induced by a high-energy electron beam (2001) Phys. Rev. B, 6420 (20), p. 205419Boudarham, G., Feth, N., Myroshnychenko, V., Linden, S., de Abajo, F.J.G., Wegener, M., Kociak, M., Spectral imaging of individual split-ring resonators (2010) Phys. Rev. Lett., 105 (25), p. 255501Koh, A.L., Fernandez-Dominguez, A.I., McComb, D.W., Maier, S.A., Yang, J.K.W., High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures (2011) Nano Lett., 11 (3), pp. 1323-1330Bohren, C.F., Huffman, D.R., (2007) Absorption and Scattering of Light by Small Particles, , Wiley-VCH Verlag GmbHde Abajo, F.J.G., Kociak, M., Probing the photonic local density of states with electron energy loss spectroscopy (2008) Phys. Rev. Lett., 100 (10), p. 106804de Abajo, F.J.G., Pattantyus-Abraham, A.G., Zabala, N., Rivacoba, A., Wolf, M.O., Echenique, P.M., Cherenkov effect as a probe of photonic nanostructures (2003) Phys. Rev. Lett., 91 (14), p. 143902Joulain, K., Carminati, R., Mulet, J.P., Greffet, J.J., Definition and measurement of the local density of electromagnetic states close to an interface (2003) Phys. Rev. B, 68 (24), p. 245405Lemay, S.G., Janssen, J.W., van den Hout, M., Mooij, M., Bronikowski, M.J., Willis, P.A., Smalley, R.E., Dekker, C., Two-dimensional imaging of electronic wavefunctions in carbon nanotubes (2001) Nature, 412 (6847), pp. 617-620Hohenester, U., Ditlbacher, H., Krenn, J.R., Electron-energy-loss spectra of plasmonic nanoparticles (2009) Phys. Rev. Lett., 103 (10), p. 106801Dereux, A., Girard, C., Weeber, J.C., Theoretical principles of near-field optical microscopies and spectroscopies (2000) J. Chem. Phys., 112 (18), pp. 7775-7789Boudarham, G., Kociak, M., Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes (2012) Phys. Rev. B, 85, p. 245447Ouyang, F., Isaacson, M., Accurate modeling of particle substrate coupling of surface-plasmon excitation in eels (1989) Ultramicroscopy, 31 (4), pp. 345-350GarcĂ­a de Abajo, F.J., Aizpurua, J., Numerical simulation of electron energy loss near inhomogeneous dielectrics (1997) Phys. Rev. B, 56 (24), pp. 15873-15884Hörl, A., TrĂŒgler, A., Hohenester, U., Tomography of particle plasmon fields from electron energy loss spectroscopy (2013) Phys. Rev. Lett., 111, p. 076801Nicoletti, O., de la Pena, F., Leary, R.K., Holland, D.J., Ducati, C., Midgley, P.A., Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles (2013) Nature, 502 (7469), pp. 80-84Nelayah, J., Kociak, M., Stephan, O., Geuquet, N., Henrard, L., de Abajo, F.J.G., Pastoriza-Santos, I., Colliex, C., Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms (2010) Nano Lett., 10 (3), pp. 902-907Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E., Botton, G.A., Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe (2011) Nano Lett., 11 (4), pp. 1499-1504Iberi, V., Mirsaleh-Kohan, N., Camden, J.P., Understanding plasmonic properties in metallic nanostructures by correlating photonic and electronic excitations (2013) J. Phys. Chem. Lett., 4 (7), pp. 1070-1078de Abajo, F.J.G., Howie, A., Retarded field calculation of electron energy loss in inhomogeneous dielectrics (2002) Phys. Rev. B, 65 (11), p. 115418Hohenester, U., Trugler, A., MNPBEM - a matlab toolbox for the simulation of plasmonic nanoparticles (2012) Comput. Phys. Commun., 183 (2), pp. 370-381Geuquet, N., Henrard, L., EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation (2010) Ultramicroscopy, 110 (8), pp. 1075-1080Fuchs, R., Theory of the optical properties of ionic crystal cubes (1975) Phys. Rev. B, 11, pp. 1732-1740Das, P., Chini, T.K., Pond, J., Probing higher order surface plasmon modes on individual truncated tetrahedral gold nanoparticle using cathodoluminescence imaging and spectroscopy combined with fdtd simulations (2012) J. Phys. Chem. C, 116 (29), pp. 15610-15619Yamamoto, N., Nakano, M., Suzuki, T., Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams (2006) Surf. Interface Anal., 38 (12-13), pp. 1725-1730Vesseur, E.J.R., de Waele, R., Kuttge, M., Polman, A., Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy (2007) Nano Lett., 7 (9), pp. 2843-2846Gomez-Medina, R., Yamamoto, N., Nakano, M., Abajo, F.J.G., Mapping plasmons in nanoantennas via cathodoluminescence (2008) New J. Phys., 10, p. 105009Coenen, T., Vesseur, E.J.R., Polman, A., Deep subwavelength spatial characterization of angular emission from single-crystal au plasmonic ridge nanoantennas (2012) ACS Nano, 6 (2), pp. 1742-1750Bashevoy, M.V., Jonsson, F., MacDonald, K.F., Chen, Y., Zheludev, N.I., Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution (2007) Opt. Express, 15 (18), pp. 11313-11320Kuttge, M., Vesseur, E.J.R., Polman, A., Fabry-Perot resonators for surface plasmon polaritons probed by cathodoluminescence (2009) Appl. Phys. Lett., 94 (18), p. 183104Suzuki, T., Yamamoto, N., Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal (2009) Opt. Express, 17 (26), pp. 23664-23671Takeuchi, K., Yamamoto, N., Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence (2011) Opt. Express, 19 (13), pp. 12365-12374Coenen, T., Vesseur, E.J.R., Polman, A., Koenderink, A.F., Directional emission from plasmonic yagi-uda antennas probed by angle-resolved cathodoluminescence spectroscopy (2011) Nano Lett., 11 (9), pp. 3779-3784Myroshnychenko, V., Nelayah, J., Adamo, G., Geuquet, N., Rodriguez-Fernandez, J., Pastoriza-Santos, I., MacDonald, K.F., de Abajo, F.J.G., Plasmon spectroscopy and imaging of individual gold nanodecahedra: A combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study (2012) Nano Lett., 12 (8), pp. 4172-4180Das, P., Chini, T.K., Spectroscopy and imaging of plasmonic modes over a single decahedron gold nanoparticle: A combined experimental and numerical study (2012) J. Phys. Chem. C, 116 (49), pp. 25969-25976N'Gom, M., Li, S.Z., Schatz, G., Erni, R., Agarwal, A., Kotov, N., Norris, T.B., Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods (2009) Phys. Rev. B, 80 (11), p. 113411von Cube, F., Irsen, S., Linden, S., From isolated metaatoms to photonic metamaterials: Mapping of collective near-field phenomena with eels (2012) 2012 Conference on Lasers and Electro-Optics (CLEO)von Cube, F., Irsen, S., Diehl, R., Niegemann, J., Busch, K., Linden, S., From isolated metaatoms to photonic metamaterials: Evolution of the plasmonic near-field (2013) Nano Lett., 13 (2), pp. 703-708Nicoletti, O., Wubs, M., Mortensen, N.A., Sigle, W., van Aken, P.A., Midgley, P.A., Surface plasmon modes of a single silver nanorod: an electron energy loss study (2011) Opt. Express, 19 (16), pp. 15371-15379Schmidt, F.P., Ditlbacher, H., Hohenester, U., Hohenau, A., Hofer, F., Krenn, J.R., Dark plasmonic breathing modes in silver nanodisks (2012) Nano Lett., 12 (11), pp. 5780-5783Mazzucco, S., Geuquet, N., Ye, J., Stephan, O., Van Roy, W., Van Dorpe, P., Henrard, L., Kociak, M., Ultralocal modification of surface plasmons properties in silver nanocubes (2012) Nano Lett., 12 (3), pp. 1288-1294Mazzucco, S., Stephan, O., Colliex, C., Pastoriza-Santos, I., Liz-Marzan, L.M., de Abajo, J.G., Kociak, M., Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars (2011) Eur. Phys. J. Appl. Phys., 54 (3), p. 33512Bosman, M., Ye, E., Tan, S.F., Nijhuis, C.A., Yang, J.K.W., Marty, R., Mlayah, A., Han, M.Y., Surface plasmon damping quantified with an electron nanoprobe (2013) Sci. Rep., 3, p. 1312Liang, H., Rossouw, D., Zhao, H., Cushing, S.K., Shi, H., Korinek, A., Xu, H., Ma, D., Asymmetric silver nanocarrot structures: Solution synthesis and their asymmetric plasmonic resonances (2013) J. Am. Chem. Soc., 135 (26), pp. 9616-9619Bosman, M., Keast, V.J., Watanabe, M., Maaroof, A.I., Cortie, M.B., Mapping surface plasmons at the nanometre scale with an electron beam (2007) Nanotechnology, 18 (16), p. 165505Chu, M.-W., Myroshnychenko, V., Chen, C.-H., Deng, J.-P., Mou, C.-Y., de Abajo, F.J.G., Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam (2009) Nano Lett., 9 (1), pp. 399-404Alber, I., Sigle, W., Muller, S., Neumann, R., Picht, O., Rauber, M., van Aken, P.A., Toimil-Molares, M.E., Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers (2011) ACS Nano, 5 (12), pp. 9845-9853Scholl, J.A., Garcia-Etxarri, A., Koh, A.L., Dionne, J.A., Observation of quantum tunneling between two plasmonic nanoparticles (2013) Nano Lett., 13 (2), pp. 564-569Talebi, N., Sigle, W., Vogelgesang, R., Koch, C.T., Fernandez-Lopez, C., Liz-Marzan, L.M., Ogut, B., van Aken, P.A., Breaking the mode degeneracy of surface plasmon resonances in a triangular system (2012) Langmuir, 28 (24), pp. 8867-8873Duan, H.G., Fernandez-Dominguez, A.I., Bosman, M., Maier, S.A., Yang, J.K.W., Nanoplasmonics: Classical down to the nanometer scale (2012) Nano Lett., 12 (3), pp. 1683-1689Ogut, B., Talebi, N., Vogelgesang, R., Sigle, W., van Aken, P.A., Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible (2012) Nano Lett., 12 (10), pp. 5239-5244Bosman, M., Anstis, G.R., Keast, V.J., Clarke, J.D., Cortie, M.B., Light splitting in nanoporous gold and silver (2012) ACS Nano, 6 (1), pp. 319-326Losquin, A., Camelio, S., Rossouw, D., Besbes, M., Pailloux, F., Babonneau, D., Botton, G.A., Kociak, M., Experimental evidence of nanometer-scale confinement of plasmonic eigenmodes responsible for hot spots in random metallic films (2013) Phys. Rev. B, 88, p. 115427Rodriguez-Gonzalez, B., Attouchi, F., Cardinal, M.F., Myroshnychenko, V., Stephan, O., de Abajo, F.J.G., Liz-Marzan, L.M., Kociak, M., Surface plasmon mapping of dumbbell-shaped gold nanorods: The effect of silver coating (2012) Langmuir, 28 (24), pp. 9063-9070Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F., Aussenegg, F.R., Krenn, J.R., Silver nanowires as surface plasmon resonators (2005) Phys. Rev. Lett., 95 (25), p. 257403DorfmĂŒller, J., Vogelgesang, R., Weitz, R.T., Rockstuhl, C., Etrich, C., Pertsch, T., Lederer, F., Kern, K., Fabry-Perot resonances in one-dimensional plasmonic nanostructures (2009) Nano Lett., 9 (6), pp. 2372-2377Esteban, R., Vogelgesang, R., Dorfmuller, J., Dmitriev, A., Rockstuhl, C., Etrich, C., Kern, K., Direct near-field optical imaging of higher order plasmonic resonances (2008) Nano Lett., 8 (10), pp. 3155-3159Imura, K., Okamoto, H., Development of novel near-field microspectroscopy and imaging of local excitations and wave functions of nanomaterials (2008) Bull. Chem. Soc. Jpn., 81, pp. 659-675Novotny, L., van Hulst, N., Antennas for light (2011) Nat. Photonics, 5 (2), pp. 83-90von Cube, F., Irsen, S., Niegemann, J., Matyssek, C., Hergert, W., Busch, K., Linden, S., Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy [invited] (2011) Opt. Mater. Express, 1 (5), pp. 1009-1018Vesseur, E.J.R., Polman, A., Controlled spontaneous emission in plasmonic whispering gallery antennas (2011) Appl. Phys. Lett., 99 (23), p. 231112Chaturvedi, P., Hsu, K.H., Kumar, A., Fung, K.H., Mabon, J.C., Fang, N.X., Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy (2009) ACS Nano, 3 (10), pp. 2965-2974Gu, L., Sigle, W., Koch, C.T., Nelayah, J., Srot, V., van Aken, P.A., Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy (2009) Ultramicroscopy, 109 (9), pp. 1164-1170Khan, I.R., Cunningham, D., Lazar, S., Graham, D., Smith, W.E., McComb, D.W., A tem and electron energy loss spectroscopy (eels) investigation of active and inactive silver particles for surface enhanced resonance raman spectroscopy (serrs) (2006) Faraday Discuss., 132, pp. 171-178Rodriguez-Lorenzo, L., Alvarez-Puebla, R.A., Pastoriza-Santos, I., Mazzucco, S., Stephan, O., Kociak, M., Liz-Marzan, L.M., de Abajo, F.J.G., Zeptomol detection through controlled ultrasensitive surface-enhanced raman scattering (2009) J. Am. Chem. Soc., 131 (13), p. 4616Batson, P.E., Surface plasmon coupling in clusters of small spheres (1982) Phys. Rev. Lett., 49, pp. 936-940Zabala, N., Rivacoba, A., Echenique, P.M., Coupling effects in the excitations by an external electron beam near close particles (1997) Phys. Rev. B, 56 (12), pp. 7623-7635Ogut, B., Vogelgesang, R., Sigle, W., Talebi, N., Koch, C.T., van Aken, P.A., Hybridized metal slit eigenmodes as an illustration of babinet's principle (2011) ACS Nano, 5 (8), pp. 6701-6706Rivacoba, A., Apell, P., Zabala, N., Energy-loss probability of stem electrons in cylindrical surfaces (1995) Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, 96 (3-4), pp. 465-469Ringe, E., McMahon, J.M., McMahon, J.M., Sohn, K., Cobley, C., Xia, Y., Huang, J., VanDuyne, R.P., Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: A systematic single-particle approach (2010) J. Phys. Chem. C, 114, p. 12511Zhang, S.P., Bao, K., Halas, N.J., Xu, H.X., Nordlander, P., Substrate-induced fano resonances of a plasmonic: Nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed (2011) Nano Lett., 11 (4), pp. 1657-1663Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., Burns, M., Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor-device technologies (1994) J. Appl. Phys., 76 (3), pp. 1363-1398Xu, S.J., Chua, S.J., Mei, T., Wang, X.C., Zhang, X.H., Karunasiri, G., Fan, W.J., Xie, X.G., Characteristics of ingaas quantum dot infrared photodetectors (1998) Appl. Phys. Lett., 73 (21), pp. 3153-3155Jani, O., Ferguson, I., Honsberg, C., Kurtz, S., Design and characterization of gan/ingan solar cells (2007) Appl. Phys. Lett., 91 (13), p. 132117Gisin, N., Ribordy, G.G., Tittel, W., Zbinden, H., Quantum cryptography (2002) Rev. Mod. Phys., 74 (1), pp. 145-195Couillard, M., Kociak, M., Stephan, O., Botton, G.A., Colliex, C., Multiple-interface coupling effects in local electron-energy-loss measurements of band gap energies (2007) Phys. Rev. B, 76 (16), p. 165131Yacobi, B.G., Holt, D.B., (1990) Cathodoluminescence Microscopy of Inorganic Solids, , Springer USJahn, U., Ristic, J., Calleja, E., Cathodoluminescence spectroscopy and imaging of GaN/(Al,Ga)N nanocolumns containing quantum disks (2007) Appl. Phys. Lett., 90 (16), p. 161117RodriguezViejo, J., Jensen, K.F., Mattoussi, H., Michel, J., Dabbousi, B.O., Bawendi, M.G., Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites (1997) Appl. Phys. Lett., 70 (16), pp. 2132-2134Grundmann, M., Christen, J., Ledentsov, N.N., Bohrer, J., Bimberg, D., Ruvimov, S.S., Werner, P., Alferov, Z.I., Ultranarrow luminescence lines from single quantum dots (1995) Phys. Rev. Lett., 74 (20), pp. 4043-4046Garayt, J.P., Gerard, J.M., Enjalbert, F., Ferlazzo, L., Founta, S., Martinez-Guerrero, E., Rol

    Experimental evidence of nanometer-scale confinement of plasmonic eigenmodes responsible for hot spots in random metallic films

    No full text
    International audienceWe report on the identification and nanometer scale characterization over a large energy range of random, disorder-driven, surface plasmons in silver semicontinuous films embedded in silicon nitride. By performing spatially resolved electron energy loss spectroscopy experiments, we experimentally demonstrate that these plasmons eigenmodes arise when the films become fractal, leading to the emergence of strong electrical fields (" hot spots ") localized over few nanometers. We show that disorder-driven surface plasmons strongly depart from those usually found in nanoparticles, being strongly confined and randomly and densely distributed in space and energy. Beyond that, we show that they have no obvious relation with the local morphology of the films, in stark contrast with surface plasmon eigenmodes of nanoparticles

    Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOWe report on a novel way of performing stimulated electron energy-loss and energy-gain spectroscopy (sEELS/sEEGS) experiments that does not require a pulsed gun. In this scheme, a regular scanning transmission electron microscope (STEM) equipped with a conventional continuous electron gun is fitted with a modified EELS detector and a light injector in the object chamber. The modification of the EELS detector allows one to expose the EELS camera during tunable time intervals that can be synchronized with nanosecond laser pulses hitting the sample, therefore allowing us to collect only those electrons that have interacted with the sample under light irradiation. Using similar to 5 ns laser pulses of similar to 2 eV photon energy on various plasmonic silver samples, we obtain evidence of sEELS/sEEGS through the emergence of up to two loss and gain peaks in the spectra at +/- 2 and +/- 4 eV. Because this approach does not involve any modification of the gun, our method retains the original performances of the microscope in terms of energy resolution and spectral imaging with and without light injection. Compared to pulsed-gun techniques, our method is mainly limited to a perturbative regime (typically no more that one gain event per incident electron), which allows us to observe resonant effects, in particular when the plasmon energy of a silver nanostructure matches the laser photon energy. In this situation, EELS and EEGS signals are enhanced in proportion to n + 1 and n, respectively, where n is the average plasmon population due to the external illumination. The n term is associated with stimulated loss and gain processes, and the term of 1 corresponds to conventional (spontaneous) loss. The EELS part of the spectrum is therefore an incoherent superposition of spontaneous and stimulated EEL events. This is confirmed by a proper quantum-mechanical description of the electron/light/plasmon system incorporating light-plasmon and plasmon-electron interactions, as well as inelastic plasmon decay.203SI4451FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2014/23399-92017/00259-5MK wants to thank F. Houdellier and A. Arbouet for fruitful discussions. This work has received support from the National Agency for Research under the program of future investment TEMPOS-CHROMATEM with the Reference No. ANR-10-EQPX-50 and FEMTOTEM ANR-14-CE26-0013. FJGA acknowledges support from ERC (Advanced Grant 789104-eNANO) and the Spanish MINECO (MAT2017-88492-R and SEV2015-0522). LFZ and YA acknowledges support from FAPESP (grants 2014/23399-9 and 2017/00259-5)

    Few-cycle high-repetition rate OPCPA for multiphoton PEEM towards atto-PEEM

    No full text
    We present a few-cycle high-repetition rate optical parametric amplifier for multiphoton PEEM experiments on semiconductor nanowires. This parametric amplifier is also used for the generation of high-order harmonics at 200kHz for future atto-PEEM experiments

    Spatial Control of Multiphoton Electron Excitations in InAs Nanowires by Varying Crystal Phase and Light Polarization

    No full text
    We demonstrate the control of multiphoton electron excitations in InAs nanowires (NWs) by altering the crystal structure and the light polarization. Using few-cycle, near-infrared laser pulses from an optical parametric chirped-pulse amplification system, we induce multiphoton electron excitations in InAs nanowires with controlled wurtzite (WZ) and zincblende (ZB) segments. With a photoemission electron microscope, we show that we can selectively induce multiphoton electron emission from WZ or ZB segments of the same wire by varying the light polarization. Developing ab initio GW calculations of first to third order multiphoton excitations and using finite-difference time-domain simulations, we explain the experimental findings: While the electric-field enhancement due to the semiconductor/vacuum interface has a similar effect for all NW segments, the second and third order multiphoton transitions in the band structure of WZ InAs are highly anisotropic in contrast to ZB InAs. As the crystal phase of NWs can be precisely and reliably tailored, our findings open up for new semiconductor optoelectronics with controllable nanoscale emission of electrons through vacuum or dielectric barriers
    corecore