106 research outputs found

    LOV Proteins Photobiophysics

    Get PDF

    A light life together: photosensing in the plant microbiota

    Get PDF
    Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA–Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein–protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture

    Oxygen diffusion pathways in mutated forms of a LOV photoreceptor from Methylobacterium radiotolerans: A molecular dynamics study

    Get PDF
    Mr4511 from Methylobacterium radiotolerans is a photoreceptor of the light, oxygen voltage (LOV) family, binding flavin mononucleotide (FMN) as a chromophore. It exhibits the prototypical LOV photocycle, with the reversible formation of an FMN-Cys71 adduct via fast decay of the FMN triplet state. Mr4511 has high potential as a photosensitiser for singlet oxygen (SO) upon mutation of C71. Mr4511-C71S shows a triplet lifetime (Ï„ T) of several hundreds of microseconds, ensuring efficient energy transfer to dioxygen to form SO. In this work, we have explored the potential diffusion pathways for dioxygen within Mr4511 using molecular dynamics (MD) simulations. The structural model of wild-type (wt) Mr4511 showed a dimeric structure stabilised by a strong leucine zipper at the two C-terminal helical ends. We then introduced in silico the C71S mutation and analysed transient and persistent oxygen channels. MD simulations indicate that the chromophore binding site is highly accessible to dioxygen. Mutations that might favour SO generation were designed based on their position with respect to FMN and the oxygen channels. In particular, the C71S-Y61T and C71S-Y61S variants showed an increased diffusion and persistence of oxygen molecules inside the binding cavity

    FRET in a Synthetic Flavin- and Bilin-binding Protein

    Get PDF
    The last decade has seen development and application of a large number of novel fluorescence-based techniques that have revolutionized fluorescence microscopy in life sciences. Preferred tags for such applications are genetically encoded fluorescent proteins (FP), mostly derivatives of the green fluorescent protein (GFP). Combinations of FPs with wavelength-separated absorption/fluorescence properties serve as excellent tools for molecular interaction studies, for example, protein-protein complexes or enzyme-substrate interactions, based on the FRET phenomenon (Förster resonance energy transfer). However, alternatives are requested for experimental conditions where FP proteins or FP couples are not or less efficiently applicable. We here report as a "proof of principle" a specially designed, non-naturally occurring protein (LG1) carrying a combination of a flavin-binding LOV- and a photochromic bilin-binding GAF domain and demonstrate a FRET process between both chromophores

    Time-resolved photoacoustics of channelrhodopsins: early energetics and light-driven volume changes

    Get PDF
    In biological photoreceptors, the energy stored in early transient species is a key feature to drive the photocycle or a chain of reactions. Time-resolved photoacoustics (PA) can explore the energy landscape of transient species formed within few ns after photoexcitation, as well as volumetric changes (Delta V) of these intermediates with respect to the parental state. In this work, PA identified these important parameters for several channelrhodopsins, namely CaChR1 from Chlamydomonas augustae and CrChR2 from Chlamydomonas reinhardtii and various variants. PA has access to the sub-ns formation of the early photoproduct P1 and to its relaxation, provided that this latter process occurs within a few mu s. We found that Delta V-P1 for CaChR1 is ca. 12 mL/mol, while it is much smaller for CrChR2 (4.7 mL/mol) and for H. salinarum bacteriorhodopsin (HsBR, Delta V-K = 2.8 mL/mol). PA experiments on variants strongly indicate that part of this large Delta V-P1 value for CaChR1 is caused by the protonation dynamics of the Schiff base counterion complex involving E169 and D299. PA data further show that the energy level of P1 is higher in CrChR2 (ca. 96 kJ/mol) than in CaChr1 (ca. 46 kJ/mol), comparable to the energy level of the K state of HsBR (60 kJ/mol). Instrumental to gain these molecular values from the raw PA data was the estimation of the quantum yield (Phi) for P1 formation via transient spectroscopy; for both channelrhodopsins, Phi(P2) was evaluated as ca. 0.4

    A structural model for the full-length blue light-sensing protein YtvA from Bacillus subtilis, based on EPR spectroscopy

    Get PDF
    A model for the full-length structure of the blue light-sensing protein YtvA from Bacillus subtilis has been determined by EPR spectroscopy, performed on spin labels selectively inserted at amino acid positions 54, 80, 117 and 179. Our data indicate that YtvA forms a dimer in solution and enable us, based on the known structures of the individual domains and modelling, to propose a three-dimensional model for the full length protein. Most importantly, this includes the YtvA N-terminus that has so far not been identified in any structural model. We show that our data are in agreement with the crystal structure of an engineered LOV-domain protein, YF1, that shows the N-terminus of the protein to be helical and to fold back in between the β-sheets of the two LOV domains, and argue for an identical arrangement in YtvA. While we could not detect any structural changes upon blue-light activation of the protein, this structural model now forms an ideal basis for identifying residues as targets for further spin labelling studies to detect potential conformational changes upon irradiation of the protein

    A LOV Protein Modulates the Physiological Attributes of Xanthomonas axonopodis pv. citri Relevant for Host Plant Colonization

    Get PDF
    Recent studies have demonstrated that an appropriate light environment is required for the establishment of efficient vegetal resistance responses in several plant-pathogen interactions. The photoreceptors implicated in such responses are mainly those belonging to the phytochrome family. Data obtained from bacterial genome sequences revealed the presence of photosensory proteins of the BLUF (Blue Light sensing Using FAD), LOV (Light, Oxygen, Voltage) and phytochrome families with no known functions. Xanthomonas axonopodis pv. citri is a Gram-negative bacterium responsible for citrus canker. The in silico analysis of the X. axonopodis pv. citri genome sequence revealed the presence of a gene encoding a putative LOV photoreceptor, in addition to two genes encoding BLUF proteins. This suggests that blue light sensing could play a role in X. axonopodis pv. citri physiology. We obtained the recombinant Xac-LOV protein by expression in Escherichia coli and performed a spectroscopic analysis of the purified protein, which demonstrated that it has a canonical LOV photochemistry. We also constructed a mutant strain of X. axonopodis pv. citri lacking the LOV protein and found that the loss of this protein altered bacterial motility, exopolysaccharide production and biofilm formation. Moreover, we observed that the adhesion of the mutant strain to abiotic and biotic surfaces was significantly diminished compared to the wild-type. Finally, inoculation of orange (Citrus sinensis) leaves with the mutant strain of X. axonopodis pv. citri resulted in marked differences in the development of symptoms in plant tissues relative to the wild-type, suggesting a role for the Xac-LOV protein in the pathogenic process. Altogether, these results suggest the novel involvement of a photosensory system in the regulation of physiological attributes of a phytopathogenic bacterium. A functional blue light receptor in Xanthomonas spp. has been described for the first time, showing an important role in virulence during citrus canker disease

    LOV Proteins: Photobiophysics

    No full text
    LOV proteins are UVA/Blue light photoreceptors employing LOV (light, oxygen, voltage) domains as photosensory modules. They are wide spread among plants, fungi, bacteria and archaea. LOV domains are /β folds of ca. 110 amino acids and bear a fully oxidized FMN (flavin mononucleotide) chromophore, non covalently bound in the dark adapted state of the protein. Upon photoexcitation, FMN forms a covalent bond with a nearby cysteine (between the cys-SH group and position 4a of the flavin)during the decay of the FMN triplet state (Figure 1). According to its absorption maximum, the adduct is referred to as LOV390 (Figure 2) and is supposed to be the signaling state in vivo. In most LOV proteins, LOV390 thermally recovers to the dark-adapted state, LOV447. Signal propagation from the LOV core to effector domains or protein partners occur via the antiparallel β-scaffold and helical caps flanking the LOV core (figure 3). The peculiar photobiophysics of LOV proteins can be exploited for advanced biotechnological applications, such as fluorescence imaging, superresolution microscopy and optogenetics (figure 4)

    Decadimenti radiativi, processi fotofisici non radiativi e trasferimento fotoindotto di elettroni in pigmenti poliidrossichinonici

    No full text
    Dottorato di ricerca in biofisica. 8. ciclo. A.a. 1994-95Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Fluorescence and time resolved photoacoustics of hypericin inserted in liposomes: dependence on pigment concentration and bilayer phase

    No full text
    Solvatochromic effects on the energy of visible absorbance and fluorescence transitions in hypericin have been studied in organic solutions and in phosphatidylcholine liposomes, suggesting that the molecule in this last case is preferentially located in the polar aprotic zone close to the lipid-water interface. Nonradiative and radiative decays of the pigment have also been studied, combining photocalorimetric and fluorescence techniques, as a function of the pigment concentration in the liposomal phase and of the gel-to-sol thermotropic transition of the phospholipidic bilayer. The results show that hypericin can sense the phase transition by exhibiting a stepwise increasing of the fluorescence quantum yield; concomitantly photoacoustic data indicate that in the gel phase, above a certain concentration of hypericin, clustering of the pigment promotes the formation of nonradiative long-lived species, whereas when the bilayer is in the sol phase ultrafast nonradiative pathways become the main deactivation channels upon increasing concentration. As a consequence, as shown by photoacoustic results, the photosensitized formation of singlet oxygen is prevented when the local concentration of hypericin in the lipidic phase is greater than about 30 mM
    • …
    corecore