339 research outputs found
Field-induced delocalization and Zener breakdown in semiconductor superlattices
We investigate the energy spectrum and the electron dynamics of a band in a semiconductor superlattice as a function of the electric field. Linear optical spectroscopy shows that, for high fields, the well-known localization of the Bloch states is followed by a field-induced delocalization, associated with Zener breakdown. Using time-resolved measurements, we observe Bloch oscillations in a regime where they are damped by Zener breakdown
The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induces fibrosis
Fibrogenesis is usually initiated when regenerative processes have failed and/or chronic inflammation occurs. It is characterised by the activation of tissue fibroblasts and dysregulated synthesis of extracellular matrix proteins. FHL2 (four-and-a-half LIM domain protein 2) is a scaffolding protein that interacts with numerous cellular proteins, regulating signalling cascades and gene transcription. It is involved in tissue remodelling and tumour progression. Recent data suggest that FHL2 might support fibrogenesis by maintaining the transcriptional expression of alpha smooth muscle actin and the excessive synthesis and assembly of matrix proteins in activated fibroblasts. Here, we present evidence that FHL2 does not promote bleomycin-induced lung fibrosis, but rather suppresses this process by attenuating lung inflammation. Loss of FHL2 results in increased expression of the pro-inflammatory matrix protein tenascin C and downregulation of the macrophage activating C-type lectin receptor DC-SIGN. Consequently, FHL2 knockout mice developed a severe and long-lasting lung pathology following bleomycin administration due to enhanced expression of tenascin C and impaired activation of inflammation-resolving macrophages
Antiferromagnetism and d-wave superconductivity in cuprates: a uster DMFT study
We present a new approach to investigate the coexistence of
antiferromagnetism and d-wave superconductivity in the two dimensional extended
Hubbard model within a numerically exact cluster dynamical mean-field
approximation. Self-consistent solutions with two non-zero order parameters
exists in the wide range of doping level and temperatures. A linearized
equation for energy spectrum near the Fermi level have been solved. The
resulting d-wave gap has the correct magnitude and k-dependence but some
distortion compare to the pure d_{x^2-y^2} superconducting order parameter due
to the presence of underlying antiferromagnetic ordering.Comment: 4 pages, 3 figure
The Electrical-Thermal Switching in Carbon Black-Polymer Composites as a Local Effect
Following the lack of microscopic information about the intriguing well-known
electrical-thermal switching mechanism in Carbon Black-Polymer composites, we
applied atomic force microscopy in order to reveal the local nature of the
process and correlated it with the characteristics of the widely used
commercial switches. We conclude that the switching events take place in
critical interparticle tunneling junctions that carry most of the current. The
macroscopic switched state is then a result of a dynamic-stationary state of
fast switching and slow reconnection of the corresponding junctions.Comment: 14 pages, 5 figures,Typographic correctio
There is no functional small-fibre neuropathy in prurigo nodularis despite neuroanatomical alterations
Prurigo nodularis (PN) is a pruritic condition with altered epidermal neuroanatomy as demonstrated previously. Here we elucidated neuroimmunological mechanisms by combining functional, morphological and gene expression experiments in twelve subjects with PN and eight healthy controls. Subjects with PN showed a reduced intra‐epidermal nerve fibre density (IENFD) in lesional skin. Quantitative sensory testing indicated maintenance of somatosensory function compared to controls. None of the tested molecular markers including the neuron‐distracting SEMA3A and neuron‐attracting NGF were altered in lesional vs non‐lesional skin in PN subjects. Accordingly, we speculate that scratching may contribute to reduced IENFD rather than an authentic endogenous neuropathy.FSW - Self-regulation models for health behavior and psychopathology - ou
Bacteria tracking by in vivo magnetic resonance imaging
Background: Different non-invasive real-time imaging techniques have been developed over the last decades to study bacterial pathogenic mechanisms in mouse models by following infections over a time course. In vivo investigations of bacterial infections previously relied mostly on bioluminescence imaging (BLI), which is able to localize metabolically active bacteria, but provides no data on the status of the involved organs in the infected host organism. In this study we established an in vivo imaging platform by magnetic resonance imaging (MRI) for tracking bacteria in mouse models of infection to study infection biology of clinically relevant bacteria. Results: We have developed a method to label Gram-positive and Gram-negative bacteria with iron oxide nano particles and detected and pursued these with MRI. The key step for successful labeling was to manipulate the bacterial surface charge by producing electro-competent cells enabling charge interactions between the iron particles and the cell wall. Different particle sizes and coatings were tested for their ability to attach to the cell wall and possible labeling mechanisms were elaborated by comparing Gram-positive and -negative bacterial characteristics. With 5-nm citrate-coated particles an iron load of 0.015 ± 0.002 pg Fe/bacterial cell was achieved for Staphylococcus aureus. In both a subcutaneous and a systemic infection model induced by iron-labeled S. aureus bacteria, high resolution MR images allowed for bacterial tracking and provided information on the morphology of organs and the inflammatory response. Conclusion: Labeled with iron oxide particles, in vivo detection of small S. aureus colonies in infection models is feasible by MRI and provides a versatile tool to follow bacterial infections in vivo. The established cell labeling strategy can easily be transferred to other bacterial species and thus provides a conceptual advance in the field of molecular MRI.<br
Clinical Efficacy of Blue Light Full Body Irradiation as Treatment Option for Severe Atopic Dermatitis
BACKGROUND: Therapy of atopic dermatitis (AD) relies on immunosuppression and/or UV irradiation. Here, we assessed clinical efficacy and histopathological alterations induced by blue light-treatment of AD within an observational, non-interventional study. METHODOLOGY/PRINCIPAL FINDINGS: 36 patients with severe, chronic AD resisting long term disease control with local corticosteroids were included. Treatment consisted of one cycle of 5 consecutive blue light-irradiations (28.9 J/cm(2)). Patients were instructed to ask for treatment upon disease exacerbation despite interval therapy with topical corticosteroids. The majority of patients noted first improvements after 2-3 cycles. The EASI score was improved by 41% and 54% after 3 and 6 months, respectively (p≤0.005, and p≤0.002). Significant improvement of pruritus, sleep and life quality was noted especially after 6 months. Also, frequency and intensity of disease exacerbations and the usage of topical corticosteroids was reduced. Finally, immunohistochemistry of skin biopsies obtained at baseline and after 5 and 15 days revealed that, unlike UV light, blue light-treatment did not induce Langerhans cell or T cell depletion from skin. CONCLUSIONS/SIGNIFICANCE: Blue light-irradiation may represent a suitable treatment option for AD providing long term control of disease. Future studies with larger patient cohorts within a randomized, placebo-controlled clinical trial are required to confirm this observation
The mechanisms by which polyamines accelerate tumor spread
Increased polyamine concentrations in the blood and urine of cancer patients reflect the enhanced levels of polyamine synthesis in cancer tissues arising from increased activity of enzymes responsible for polyamine synthesis. In addition to their de novo polyamine synthesis, cells can take up polyamines from extracellular sources, such as cancer tissues, food, and intestinal microbiota. Because polyamines are indispensable for cell growth, increased polyamine availability enhances cell growth. However, the malignant potential of cancer is determined by its capability to invade to surrounding tissues and metastasize to distant organs. The mechanisms by which increased polyamine levels enhance the malignant potential of cancer cells and decrease anti-tumor immunity are reviewed. Cancer cells with a greater capability to synthesize polyamines are associated with increased production of proteinases, such as serine proteinase, matrix metalloproteinases, cathepsins, and plasminogen activator, which can degrade surrounding tissues. Although cancer tissues produce vascular growth factors, their deregulated growth induces hypoxia, which in turn enhances polyamine uptake by cancer cells to further augment cell migration and suppress CD44 expression. Increased polyamine uptake by immune cells also results in reduced cytokine production needed for anti-tumor activities and decreases expression of adhesion molecules involved in anti-tumor immunity, such as CD11a and CD56. Immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer activities. Recent investigations revealed that increased polyamine availability enhances the capability of cancer cells to invade and metastasize to new tissues while diminishing immune cells' anti-tumor immune functions
- …