4,189 research outputs found

    Constraints on a general 3-generation neutrino mass matrix from neutrino data: application to the MSSM with R-parity violation

    Get PDF
    We consider a general symmetric (3×3)(3\times 3) mass matrix for three generations of neutrinos. Imposing the constraints, from the atmospheric neutrino and solar neutrino anomalies as well as from the CHOOZ experiment, on the mass squared differences and on the mixing angles, we identify the ranges of allowed inputs for the 6 matrix elements. We apply our results to Majorana left-handed neutrino masses generated at tree level and through fermion--sfermion loop diagrams in the MSSM with R-parity violation. The present experimental results on neutrinos from laboratories, cosmology and astrophysics are implemented to either put bounds on trilinear (λijk,λijk′\lambda_{ijk}, \lambda'_{ijk}) and bilinear (μe,μ,τ\mu_{e,\mu,\tau}) R-parity-violating couplings or constrain combinations of products of these couplings.Comment: 35 pages, 25 PS figures, REVTeX, revised version to appear in Nuclear physics

    Constraints on both bilinear and trilinear R-parity violating couplings from neutrino laboratories and astrophysics data

    Get PDF
    We consider neutrino masses generated at tree level and at one loop, through fermion--sfermion loop diagrams, in the MSSM with R-parity violation. Using the (3×3)(3\times 3) mass and mixing matrices for three generations of neutrinos and the present experimental results on neutrinos from laboratories and astrophysics simultaneously, we put bounds on both trilinear (λijk,λijk′\lambda_{ijk}, \lambda'_{ijk}) and bilinear (μe,μμ,μτ\mu_{e},\mu_\mu,\mu_\tau) R-parity-violating couplings

    Efficiency of Human Activity on Information Spreading on Twitter

    Full text link
    Understanding the collective reaction to individual actions is key to effectively spread information in social media. In this work we define efficiency on Twitter, as the ratio between the emergent spreading process and the activity employed by the user. We characterize this property by means of a quantitative analysis of the structural and dynamical patterns emergent from human interactions, and show it to be universal across several Twitter conversations. We found that some influential users efficiently cause remarkable collective reactions by each message sent, while the majority of users must employ extremely larger efforts to reach similar effects. Next we propose a model that reproduces the retweet cascades occurring on Twitter to explain the emergent distribution of the user efficiency. The model shows that the dynamical patterns of the conversations are strongly conditioned by the topology of the underlying network. We conclude that the appearance of a small fraction of extremely efficient users results from the heterogeneity of the followers network and independently of the individual user behavior.Comment: 29 pages, 10 figure

    Symmetry Nonrestoration at High Temperature in Little Higgs Models

    Full text link
    A detailed study of the high temperature dynamics of the scalar sector of Little Higgs scenarios, proposed to stabilize the electroweak scale, shows that the electroweak gauge symmetry remains broken even at temperatures much larger than the electroweak scale. Although we give explicit results for a particular modification of the Littlest Higgs model, we expect that the main features are generic. As a spin-off, we introduce a novel way of dealing with scalar fluctuations in nonlinear sigma models, which might be of interest for phenomenological applications.Comment: 23 pages, LaTeX, 4 figure

    The hydrological response of baseflow in fractured mountain areas

    Get PDF
    The study of baseflow in mountainous areas of basin headwaters, where the characteristics of the often fractured materials are very different to the standard issues concerning porous material applied in conventional hydrogeology, is an essential element in the characterization and quantification of water system resources. Their analysis through recession fragments provides information on the type of response of the sub-surface and subterranean systems and on the average relation between the storage and discharge of aquifers, starting from the joining of these fragments into a single curve, the Master Recession Curve (MRC). This paper presents the generation of the downward MRC over fragments selected after a preliminary analysis of the recession curves, using a hydrological model as the methodology for the identification and the characterization of quick sub-surface flows flowing through fractured materials. The hydrological calculation has identified recession fragments through surface runoff or snowmelt and those periods of intense evapotranspiration. The proposed methodology has been applied to three sub-basins belonging to a high altitude mountain basin in the Mediterranean area, with snow present every year, and their results were compared with those for the upward concatenation of the recession fragments. The results show the existence of two different responses, one quick (at the sub-surface, through the fractured material) and the other slow, with linear behaviour which takes place in periods of 10 and 17 days respectively and which is linked to the dimensions of the sub-basin. In addition, recesses belonging to the dry season have been selected in order to compare and validate the results corresponding to the study of recession fragments. The comparison, using these two methodologies, which differ in the time period selected, has allowed us to validate the results obtained for the slow flow

    Neutrino masses and mixings in the MSSM with soft bilinear RpR_p violation

    Get PDF
    We analyse a simple RPV extension of the MSSM, with bilinear R-parity violation in the soft terms and vevs, but not between the terms in the superpotential. The model gives two massive neutrinos, and can fit all constraints from neutrino data. We show analytically how to compute the lepton number violating Lagrangian parameters from neutrino masses and mixing angles. Conversely, we numerically vary the bilinear couplings as input parameters to determine the allowed ranges that are consistent with neutrino data. We briefly comment on the implications of our bounds for low energy LFV processes

    Identification of Xenopus SMC protein complexes required for sister chromatid cohesion

    Get PDF
    The structural maintenance of chromosomes (SMC) family is a growing family of chromosomal ATPases. The founding class of SMC protein complexes, condensins, plays a central role in mitotic chromosome condensation. We report here a new class of SMC protein complexes containing XSMC1 and XSMC3, Xenopus homologs of yeast Smc1p and Smc3p, respectively. The protein complexes (termed cohesins) exist as two major forms with sedimentation coefficients of 9S and 14S. 9S cohesin is a heterodimer of XSMC1 and XSMC3, whereas 14S cohesin contains three additional subunits. One of them has been identified as a Xenopus homolog of the Schizosaccharomyces pombe Rad21p implicated in DNA repair and the Saccharomyces cerevisiae Scc1p/Mcd1p implicated in sister chromatid cohesion. 14S cohesin binds to interphase chromatin independently of DNA replication and dissociates from it at the onset of mitosis. Immunodepletion of cohesins during interphase causes defects in sister chromatid cohesion in subsequent mitosis, whereas condensation is unaffected. These results suggest that proper assembly of mitotic chromosomes is regulated by two distinct classes of SMC protein complexes, cohesins and condensins

    Storm characterization and simulation for damage evolution models of maritime structures

    Get PDF
    This paper presents a new approach to statistically characterize and simulate the wave climate under storm conditions. The methodology includes the joint selection of the parameters that identify storm events (significant wave height threshold, minimum storm duration and minimum interarrival time between consecutive storms) by means of hypothesis testing on the distribution functions of the number of storm events and the elapsing time between storms, providing an improved characterization of the parameters that define storm events. The main wave variables and their temporal dependence are characterized by non-stationary mixture distribution functions and a vector autoregressive model. This allows to adequately reproduce the random temporal evolution of storm events, crucial for the study of damage progression in maritime structures without the use of predefined geometries. The long-term time series of storm events and calm periods is obtained using copula functions which analyze the joint dependence of storm duration and interarrival time for separate climate intervals. The model is applied to hindcast data at a location of the Mediterranean sea close to the Granada coast in Spain to show its ability to reproduce wave storm conditions accounting for the time variability of the storminess. An example of application, using a large number of simulations and a damage progression model in a maritime structure, is presented
    • …
    corecore