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A B S T R A C T   

This paper presents a new approach to statistically characterize and simulate the wave climate under storm 
conditions. The methodology includes the joint selection of the parameters that identify storm events (significant 
wave height threshold, minimum storm duration and minimum interarrival time between consecutive storms) by 
means of hypothesis testing on the distribution functions of the number of storm events and the elapsing time 
between storms, providing an improved characterization of the parameters that define storm events. The main 
wave variables and their temporal dependence are characterized by non-stationary mixture distribution func
tions and a vector autoregressive model. This allows to adequately reproduce the random temporal evolution of 
storm events, crucial for the study of damage progression in maritime structures without the use of predefined 
geometries. The long-term time series of storm events and calm periods is obtained using copula functions which 
analyze the joint dependence of storm duration and interarrival time for separate climate intervals. The model is 
applied to hindcast data at a location of the Mediterranean sea close to the Granada coast in Spain to show its 
ability to reproduce wave storm conditions accounting for the time variability of the storminess. An example of 
application, using a large number of simulations and a damage progression model in a maritime structure, is 
presented.   

1. Introduction 

The design of coastal infrastructures usually considers wave height 
as one of the main maritime variables that triggers successive stress 
states affecting their operationality, serviceability and reliability. 
Different recommendations and manuals such as the U.S. Coastal Engi
neering Manual (U.S. Army Corps of Engineers, 2002), the Spanish 
Recommendations of Maritime Works ROM (Losada, 2001), the EurOtop 
manual (Van der Meer et al., 2018) and the Rock Manual (CIRIA et al., 
2007) focus on the analysis of the ultimate limit state failure modes, 
which produce the collapse of the structure. The classical approach to 
study them usually involves the use of extreme value theory and fits an 
extreme probabilistic model to the annual maximum significant wave 
height or to the peaks over a given threshold (POT). More modern ap
proaches gather the scientific developments regarding damage pro
gression (Melby and Kobayashi, 1999; Sousa and Santos, 2006; Castillo 
et al., 2012, among others) and highlight the importance to assess the 
loss of functionality of the structure and the study of the so called 
serviceability limit states which are closely related to the storm 

evolution and duration. 
These studies require the definition of the parameters that define a 

storm, in particular the value of the significant wave height threshold 
which is related to the minimum admissible damage of a sea state, and to 
simulate the temporal evolution of the storms to account for the damage 
progression (Losada, 2018). 

Storm events are customarily defined as independent events during 
which the significant wave height, Hs, exceeds a certain threshold, Hs;u. 
Their identification for extreme data analysis is usually done by setting 
both the values of Hs;u and the minimum time interval between 
consecutive events, δ0, required to guarantee their independence. There 
are several works devoted to the selection of the threshold in different 
fields of expertise and methods such as graphical methods involving the 
stability of the model parameters, the mean residual life plot, goodness- 
of-fit (Coles et al., 2001; Bernardara et al., 2014), automatic or 
quasi-automatic computational approaches (Solari et al., 2017; Liang 
et al., 2019; Thompson et al., 2009), among others. In coastal engi
neering applications the threshold value may also depend on the 
particular problem under consideration (a relatively high threshold is 
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required to study breakwater damage while smaller values have to be 
chosen to assess coastal retreat). Therefore, the selection needs certain 
expertise and engineering judgement (Goda, 2010). Regarding the se
lection of the minimum interarrival time between events, δ0, it varies in 
literature from hours to days depending on the region and it is almost 
always considered a constant value, i.e. is independent from the selected 
threshold (M�endez et al., 2006; Li et al., 2014). In addition, when the 
analysis is aimed at the study of processes in which persistence is a key 
element, as it is the case of damage evolution assessment, the determi
nation of storms needs the definition of a minimum storm duration d0 to 
consider only significant loads. For a given sample, there might be 
several (Hs;u, δ0) combinations capable of ensuring, with a reasonable 
reliability, storm independence and the validity of the model (Liang 
et al., 2019). Given the relations between parameters and their influence 
on the resulting extreme events, there is still need to develop method
ologies for the joint characterization of the parameters that define storm 
events (Hs;u, d0, δ0) providing that it can be checked that the underlying 
assumptions are met. 

The increased interest in recent years in damage progression models 
related to the loss of functionality of maritime structure requires not 
only a definition of the storm in terms of its duration and peak value but 
a characterization of its temporal evolution (storm shape). Several au
thors have used an idealized “storm shape” such as a triangular geom
etry and searched for its equivalent with a real storm by comparing their 
magnitude (Boccotti, 2000), power (Fedele and Arena, 2009), or dura
tion (Corbella and Stretch, 2012). However, the storm history evolution 
of the sea states in sea and swell waves is not adequately reproduced by 
these theoretical models and do not provide enough information for 
applications where the features and evolution of the metocean time 
series are relevant (Martín-Soldevilla et al., 2015; J€ager et al., 2019) and 
there is still need to account for the random temporal evolution of storm 
events. 

Other works propose different methodologies for simulating time- 
dependent series for meteorological and oceanic variables. Solari and 
Losada (2011) proposed a methodology that used a non-stationary 
mixture model of the significant wave height distribution and 
modeled the time dependence with the aid of copulas. J€ager and N�apoles 
(2017) used vine-copulas to simulate significant wave height and mean 
periods. In these and other works, the wave direction was not included 
as a main variable on the study or was just studied independently 
justified by (i) limitations in dataset availability, (ii) waves impinging 
from a limited range of directions, and (iii) a weak correlation between 
significant wave height and wave direction (Li et al., 2014). However, 
for the study of certain processes, the wave direction cannot be dis
regarded. J€ager et al. (2019) presented a method to jointly simulate 
wave climate time series of the significant wave height, the mean wave 
period and the mean direction, this last one as a categoric variable 
taking two possible values. On the basis of non-stationary mixture dis
tributions and a vector autoregressive (VAR) model Solari and Van 
Gelder (2011) proposed a methodology to simulate multivariate wave 
climate series including the mean direction fitted to a continuous vari
able distribution. The modeling of complete time series allows for the 
characterization of the evolution of metocean variables but increases the 
computational costs when the simulation of only storm conditions 
would be, most of the times, enough to address problems related to 
operationality, reliability and serviceability of maritime works. 

The aim of this paper is the development of a simple, robust and 
efficient methodology for the analysis and full temporal simulation of 
storm events for its application in damage evolution models of maritime 
structures. The proposed tool is site-specific and includes the statistical 
analysis of historical data to define (i) a rigorous and joint selection of 
the parameters that allow the identification of storms which are 
generally defined independently and (ii) the non-stationary joint char
acterization of the involved random variables with emphasis on their 
non-stationary behavior during storm events and (iii) a methodology to 
simulate multivariate time series under storm conditions that jointly 

reproduces the significant wave height, the peak period, and the mean 
incoming wave direction taking into account the seasonal climate 
variability allowing to perform an uncertainty assessment of the related 
problem. The model is applied to simulate a large number of storm 
events time-series for their use in a probabilistic study of damage evo
lution of a breakwater. 

The paper is organised as follows. In section 2 the methodology is 
presented, including the criterion proposed for the definition of the 
storm (x2.1), the joint statistical characterization of the wave variables 
(x2.2) and the simulation procedure (x2.3). In section 3, the methodol
ogy is applied to a case study in the Mediterranean coast of Spain and the 
verification of the results is presented in section 4. An example of the 
simulation of long-term time series of storm events for the probabilistic 
assessment of damage progression in a breakwater is presented in sec
tion 5. Section 6 presents a discussion regarding the applicability of the 
methodology. Finally, section 7 summarizes the main findings derived 
from this work. 

2. Methodology 

This work proposes a methodology that uses historical wave climate 
data to (i) properly define the extreme events by jointly selecting the 
significant wave height threshold, the minimum storm duration and the 
minimum interarrival time, (ii) stochastically characterize the distri
bution functions of the significant wave height, the peak period and the 
mean incident wave direction and their multivariate temporal depen
dence and (iii) simulate long-term time series of wave climate under 
storm conditions. Fig. 1 presents a diagram of the methodology indi
cating the subsection where each step is presented. 

2.1. Criterion for storm definition 

In this context, a storm is defined as a rare event that occurs when the 
significant wave height, Hs, exceeds a certain threshold, Hs;u. The se
lection of the threshold has to guarantee that the events are independent 
so that the counting process, N, describing the number of occurrences in 
a certain time interval, follows a Poisson distribution or, equivalently, 
the interarrival time between storms, Δ, follows an exponential distri
bution. Taking the year as temporal reference, the parameter of the 
Poisson distribution, λ, is the mean annual number of storms, that co
incides with the inverse of the expected value of the corresponding 
exponential distribution of the interarrival time between storms, and 
they are usually estimated from available historical or hindcast data. 

In practice, for a given selected threshold, Hs;u, the identification of 
individual storms also requires the definition of a minimum storm 
duration, d0, to avoid interpreting relatively small and short exceed
ances of the significant wave height as storms, and a minimum inter
arrival time, δ0, between successive events, so that the independence 
assumption is fulfilled and the number of events follow a Poisson dis
tribution (Fig. 2). Both values depend on the threshold and cannot be set 
arbitrarily given that a too low δ0 or d0 results in an overestimation of 
the number of storms, whereas a too high d0 would give an under
estimated number of storms and a too high δ0 leads to the over
estimation of the storms duration. Moreover, these parameters are site 
specific since they are linked to physical atmospheric phenomena and 
depend, among others, on atmospheric wave generation conditions and 
fetch domain. Taking this into account, we propose a criterion for the 
joint selection of Hs;u, δ0 and d0 with the following hypotheses tests:  

1. For the distribution of the number of events, N: Null hypothesis HN
0 : N 

follows a Poisson distribution Alternative hypothesis HN
1 : N does not 

follow a Poisson distribution  
2. For the interarrival times, Δ: Null hypothesis HΔ

0 : Δ follows an 
exponential distribution Alternative hypothesis HΔ

1 : Δ does not 
follow an exponential distribution 
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To evaluate the goodness-of-fit of the annual number of storms dis
tribution, N, a χ2 non-parametric test is performed with samples ob
tained from hindcast data: n1; n2;…nV with V being the number of years 
available in the dataset. In the case of the interarrival time Δ, a Kol

mogorov–Smirnov (KS) test is used, with δ1;δ2;…;δK, where K ¼
PV

v¼1
nv �

1, the number of interarrival times in the hindcast dataset. We then 
obtain the p-values, namely, pN and pΔ of the tests and check whether the 
conditions pN > α and pΔ > α are fulfilled, with α being the chosen 
significance level. The nonrejection region of the null hypotheses is 
defined as the intersection between the regions where pN > α and pΔ >

α. Additionally, due to the equivalence of the null hypotheses HN
0 and 

HΔ
0 , it should be checked that λ and δ, indicating the estimations of the 

expected values of N and Δ, respectively, are related so that λ � 1= δ. 
The value of α represents the probability of incorrectly rejecting the 

null hypothesis, H0, usually referred to as Type I error. The power of the 
test, that measures the probability of correctly rejecting the null hy
pothesis when it is not true, called 1 � β (where β is the so called Type II 

error) depends on the value of α, the size of the sample and the alter
native hypothesis, H1. Due to the definition given to H1 (open to any 
other distribution than the one proposed in H0), the power of the test 
cannot be estimated. It is known, however, that it is reduced as the value 
of α decreases. 

2.2. Stochastic characterization of maritime variables and their 
dependence 

Once the value of the tuple (Hs;u, d0, δ0) is set, the following infor
mation is obtained from the hindcast wave data: (1) samples of the 
annual number of storms, N, storms duration, D, and interarrival times, 
Δ, and (2) multivariate time series during storm conditions of the sig
nificant wave height, Hs

sðtÞ, the concomitant peak period Ts
pðtÞ and mean 

incoming wave direction θs
mðtÞ. 

The stochastic characterization and temporal dependence of extreme 
events comprises (i) the use of a copula model to characterize the dis
tribution of (D; Δ) presented in x2.2.1, (ii) the fit of univariate non- 
stationary mixture distributions Fs

Hs
, Fs

Tp 
and Fs

θm 
(see x2.2.2), (iii) a 

VAR(q) model to characterize the multivariate temporal dependence of 
Hs

sðtÞ, T
s
pðtÞ and θs

mðtÞ presented on x2.2.3. 

2.2.1. Interdependence of storm events via Archimedean copulas 
It cannot be assumed that the duration of a storm, D, and the inter

arrival time with the following storm, Δ, are independent variables (Li 
et al., 2018). In addition, storm events usually show a seasonal variation 
in mid-latitudes. Therefore, in this study the characterization of (D, Δ) 
was done for different climatic periods that must be selected depending 
on location. For each climatic period, the joint distribution function F of 
D-Δ is obtained with a copula function, C (Sklar, 1959), as: 

Fðd; δÞ¼CðFDðdÞ;FΔðδÞÞ; (1)  

where FD and FΔ are the marginal cumulative distribution functions 

Fig. 1. Flow diagram of the methodology.  

Fig. 2. Definition sketch of a storm event and associated variables: storm 
duration, D, minimum storm duration, d0, interarrival time between successive 
storms, Δ, and minimum interarrival time, δ0. 
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(CDF) of the storms duration and interarrival times, respectively. For the 
selection of the best-fitting copula, given that there is not a clear pro
cedure for selecting it (De Michele et al., 2007), we have, therefore, 
searched among different families and found that the Archimedean 
Clayton copulas provided the best visual fit to the data. This is in 
agreement with other studies where the Clayton, Frank, and Gumbel 
copulas have been used for extreme events applications (Martín Hidalgo, 
2015; Li et al., 2018, and references herein). The Clayton family reads as 
follows: 

Cθc ðd; δÞ¼ ðmax½d� θc þ δ� θc � 1; 0�Þ�
1

θc ; (2)  

where θc ¼ 2τ=ð1 � τÞ is the dependence parameter obtained from the 
Kendall rank correlation coefficient, τ. The empirical CDFs of D and Δ 
can be calculated from historical or hindcast data. 

2.2.2. Univariate non-stationary distributions 
The univariate distributions of the involved random variables are 

estimated from the available time series. In a similar fashion to Solari 
and Losada (2011), the probabilistic models are considered 
non-stationary by characterizing each parameter a (a ¼ ξ, u, σi, αi, μi, 
⋯) as a time-dependent function whose Fourier series expansion trun
cated to NF oscillatory terms is: 

aðtÞ¼ a0 þ
XNF

l¼1
ðalcosð2πltÞþ blsinð2πltÞÞ; (3)  

where a0, al and bl, l ¼ 1;…;NF are the coefficients of the trigonometric 
(Fourier) expansion of parameter a. The time is, however, not explicitly 
included in the notation of the distributions for the sake of simplicity. 

Note that the random variable Hs is non-negative, unbounded above, 
and has an asymptotic probability function with a clear difference be
tween the central body and the upper tail. Then, a non-stationary 
mixture probability density function, fðHsÞ, is used as proposed by 
Solari and Losada (2011), capable of reproducing the statistical vari
ability at the tails and for different time scales. The mixture distribution 
is composed by three functions describing the lower tail (fm), the central 
regime (fc) and the upper tail (fM) as: 

f ðHsÞ¼

8
<

:

fmðHsÞFcðu1Þ Hs < u1
fcðHsÞ u1 � Hs � u2

fMðHsÞð1 � Fcðu2ÞÞ Hs > u2

; (4)  

where Fc is the distribution function of the central regime modeled by 
any parametric continuous distribution; u1 and u2 are the location pa
rameters, taken as the lower and upper limits of the central regime. The 
tails are modeled following a Generalized Pareto Distribution (GPD). 
Therefore, fm is the GPD of the minima and fM is the GPD of the maxima, 
given by: 

fmðHs; ξm; u1; σmÞ¼
1

σm

�

1 �
ξmðHs � u1Þ

σm

�� 1
ξm
� 1

; (5)  

fMðHs; ξM ; u2; σMÞ¼
1

σM

�

1þ
ξMðHs � u2Þ

σM

�� 1
ξM
� 1

; (6)  

where ξα, uα and σα, (α ¼ m;M) are the shape, location and scale pa
rameters that, as said before, are assumed to be time-dependent. The 
values of thresholds u1 and u2 and of the parameters of the three 
probability functions in Equation (4) are obtained by maximizing the 
negative log-likelihood function (NLLF). This logarithmic function is 
composed by the corresponding PDFs of the lower tail, the body and the 
upper tail evaluated with data in the ranges ð � ∞;u1Þ, ½u1; u2� and ðu2;

∞Þ, respectively. The continuity is guaranteed by imposing that the 
CDFs estimated at u1 and u2 coincide with the values obtained with the 
corresponding expressions at the neighbouring regions. These condi
tions and the imposed limitation that the lower limit of the minima GPD 

should be zero, give the following relationships between the parameters: 

σm¼
Fcðu1Þ

fcðu1Þ
; ξm¼ �

σm

u1
; σM ¼

1 � Fcðu2Þ

fcðu2Þ
: (7)  

As a result, the number of parameters to fit is reduced to five: u1, u2, the 
scale and location parameters of the LN, and the shape parameter of the 
upper tail probability model. It is worth noting that there is no relation 
between the thresholds u1 and u2 of the mixed probability function and 
the threshold Hs;u used to define storm events. 

The distribution function of Hs under storm conditions, is then esti
mated as follows: 

Fs
Hs
ðHsÞ¼

FHs ðHsÞ � FHs ðHs;uÞ

1 � FHs ðHs;uÞ
: (8)  

Unlike with Hs, where the complete dataset was used for the statistical 
characterization, the peak period and mean wave direction probability 
models were fitted with concomitant data to Hs that fulfilled Hs � Hs;u. 
The peak period under storm conditions, Ts

p, is fitted to a parametric 
single non-stationary continuous distribution function with the most 
commonly used being the Lognormal distribution. The probability 
model reads as follows: 

f
�

Ts
p; μ; σ

�
¼

1
Ts

pσ
ffiffiffiffiffi
2π
p e� ðlnðT

s
pÞ� μÞ

2
=2σ2

: (9) 

The mean wave direction under storm conditions, θs
m, is described by 

a sum of NTN stationary truncated normal (TN) functions limited to ð0∘;

360∘Þ (see e.g., Fisher (1995)) in a similar fashion as (Solari and Losada, 
2016), where NTN is the number of main wave directions. The use of 
stationary functions in this case was motivated by the lack of a clear 
temporal variability in the wave direction. This assumption is equivalent 
to keeping the mean term of Eq. (3) and neglecting the expansion co
efficients. The probability density function of wave direction is given by: 

f
�
θs

m; αi
�
¼
XNTN

i¼1
αifTNi

�
θs

m

�
; (10)  

where the sum of αi is equal to 1, and: 

fTNi

�
θs

m; μi; σi
�
¼

1
σi

ffiffiffiffiffi
2π
p e

�
ðθs

m � μiÞ
2

2σ2
i : (11)  

2.2.3. Mutlivariate temporal dependence of storm events 
From the series under storm conditions, ðHs

sðtÞ; Ts
pðtÞ; θs

mðtÞÞ, sta
tionary normalized times series are obtained as: 

ZHs ðtÞ¼Φ� 1
�

Fs
Hs

�
Hs

sðtÞ
��

ZTp ðtÞ¼Φ� 1
�

Fs
Tp

�
Ts

pðtÞ
��

Zθm ðtÞ ¼Φ� 1� Fs
θm

�
θs

mðtÞ
��
; (12)  

where Φ� 1 is the inverse of the normal cumulative distribution function 
with null mean and standard deviation equal to one. The temporal 
dependence between variables during storm events is characterized by 
means of a stationary VAR(q) model which assumes a linear relationship 
between the variables and their past values. The parameters of the VAR 
model are obtained by fitting the normalized multivariate time series 
ðZHs ðtiÞ; ZTp ðtiÞ; Zθm ðtiÞÞi to the expressions given in Appendix A. 

2.3. Storm series simulations 

The simulation process begins with the Montecarlo simulation of the 
storm duration (d1) and the interarrival time (Δ1) using the Copula 
function (x 2.2.1). Then, we obtain a multivariate normalized time series 
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of sea-states of duration d1 using the VAR(q) model (x 2.2.3). Finally, the 
time series describing the sea states evolution is obtained after the 
application of the corresponding inverse cumulative distribution func
tions for each variable (x 2.2.2). This process is repeated until the end of 
the simulated period. 

3. Application to case study 

The methodology presented in this work was applied to a case study 
in the Mediterranean coast of Spain. This region lies in a transition zone 
between the Atlantic ocean and the Mediterranean sea. It is naturally 
protected from swell waves formed in the Atlantic ocean and its fetch is 
limited by the African continent. The study was carried out using 
hindcast wave data in coordinates 3.608∘ W - 36.66∘ N (Fig. 3) located at 
the Albor�an Sea, close to the coast of Granada, with hourly data from 
January 1st, 1979 until December 31st, 2018 (Mentaschi et al., 2015). 
The wave regimen is bimodal, with waves arriving from the WSW (35%) 
and ESE (50%). The main direction is attributable to the maximum fetch 
found at ESE (� 112:5∘), with waves arriving obliquely to the shore. 
Waves are partially developed with periods ranging from 3 to 15 s and 
values of maximum significant wave height barely reaching 6.4 m. 

3.1. Parameters selection for the identification of storms 

For each given combination within a range of values of Hs;u, d0 and 
δ0, we obtain the series of the annual number of storms, N, and the 
interarrival times Δ. Then, following the methodology proposed in x2.1, 
the p-values of the χ2-test (pN) and KS-test (pΔ) are computed. Theo
retically, the values of (Hs;u, d0, δ0) for the rejection of the null hy
potheses define a 3D surface. For a given value of δ0 it is possible to draw 
over a 2D domain (Hs;u, d0), the nonrejection region for both tests 
defined as the intersection between the regions where pN > α and pΔ >

α. 
Fig. 4 presents the isolines corresponding to the significance level of 

α ¼ 5% of the p-values for the selected range of ðHs;u; d0Þ and different 
values of δ0. They delimit the areas where the null hypotheses that the 
data follow the corresponding distributions (p � values> 0:05) cannot 
be rejected. The values of Hs;u range from the 90th percentile to the 
99:9th, d0 varies from 12 to 72 h and the selected values of δ0 are 12, 24, 
36, 48 and 60 h. The selected significance level of α ¼ 5% implies that 
there is a 5% probability of incorrectly rejecting the null hypothesis 
(Type I error rate). 

It can be observed that, in general, the nonrejection region on the left 
side boundary is delimited by higher values of Hs;u for increasing δ0, 
whereas a clear pattern could not be found on the right side boundary of 
the region. As examples, for high values of d0 � 60 h, for δ0 ¼ 24 hours 
the valid Hs;u ranges from � 2 � 2:7 m whereas for δ0 ¼ 60 h, the 

nonrejection region comprises Hs;u � 2:3 � 3 m. In the case of lower 
values of d0 � 20 h, the nonrejection region remains constant for δ0 ¼

24 � 60 h, at Hs;u � 3 � 4 m. Therefore, this indicates that in this case 
study, as the minimum storm duration decreases, Hs;u increases and 
storms are identified with the highest waves possible. For a minimum 
storm duration of approximately 1 day, the storms are always identified 
to wave heights between the 99th and 99:8th percentile regardless of the 
minimum interarrival time. Meaning that these correspond to extreme 
events that happen always for interarrival times larger than 2.5 days. 
When the minimum storm duration is set to be at least of 2.5 days, the 
waves identified as extremes are significantly lower and more so when 
the time between storms is set to a minimum of 1 day implying that long 
events closely together correspond to lower waves. 

As previously mentioned the selected (Hs;u, d0, δ0) must fulfill the 
hypothesis tests, meet the condition λ � 1=δ and provide an adequate 
number of events that allows for the statistical multivariate character
ization of the storm events. Fig. 5 depicts the nonrejection region for 
different δ0 as well as the contours of ε� ¼ jλ � 1 =δj=λ and the mean 
annual number of storm events, λ. 

It can be observed that for δ0 ¼ 12 h (upper left panel), most of the 
nonrejection region encompasses values of ε� ¼ 1 � 2%. For δ0 ¼ 24 h 
(upper right) there are areas within the nonrejection region that corre
spond to ε� < 0:5% which delimits the optimal domain and values λ � 3 
where a bigger sample of storm events is obtained. For δ0 > 36 h, the 
nonrejection region generally comprises lower values of mean annual 
number of storms and higher significant wave height thresholds. 

The final selection of the optimal values (Hs;u, d0, δ0) depends on the 
specific problem being analized and the atmospheric processes in the 
site study. In this case, given that storms are produced by the passage of 
low pressure systems lasting at least 24 h and with minimum interarrival 
times of a day on average, the selected storm parameters were Hs;u ¼ 2:4 
m (97:3th percentile), d0 ¼ 40 h and δ0 ¼ 24 h. Using these values, we 
obtain a series of 91 storm events with an average duration of �2 days Fig. 3. Location of the case study.  

Fig. 4. Nonrejection regions of significant wave height threshold, Hs;u, mini
mum storm duration, d0, and different values of δ0, for the case study. The 
nonrejection region is delimited by the isolines of the p-values of the KS-test for 
the distribution of the interarrival times Δ (pΔ > α - solid line) and the χ2-test 
for the distribution of the number of events N (pN > α - dashed lines). The 
different colors represent different cases of minim um interarrival time δ0. A 
sketch of the nonrejection region is given in the upper right corner of the figure. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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and 13 h and mean annual number of storms λ � 2:3. 

3.2. Interdependence of (D,Δ) via Archimedean copulas 

The time series of storm events was divided into meteorological 

seasons to characterize its temporal distribution. Fig. 6 shows the sam
ples of the random vector (D,Δ) for Summer/Fall (June–November) and 
Winter/Spring (December–May) obtained from hindcast data. It can be 
observed that the storm events are more frequent and more extreme 
during Winter/Spring with higher d and Hs;max values. These samples 

Fig. 5. Nonrejection region of the hypothesis pΔ > α (solid colored line) and pN > α (dashed colored line) for δ0 ¼ 12; 24;36 and 48 h. Grayscale contours of 
jλ � 1 =δj=λ and isolines of the mean annual number of storm events, λ for the case study. The star symbol on the δ0 ¼ 24 h panel (upper right) indicates the chosen 
value of (Hs;u, d0). 

Fig. 6. Scatter plots of storm duration, d, and interarrival time, δ, of storm events for the two selected climatic periods. The colors represent the Hs;max of each event. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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were used to fit copula models. 
The empirical CDFs of D and Δ were calculated via Kernel Density 

Estimation (KDE). The use of non-parametric methods such as KDE 
models is adequate when there is not an established recommended 
distribution or when an acceptable fit cannot be obtained. This is the 
reason why we applied a KDE for the storm duration, D, and for 
simplicity, we also extended its use for the interarrival time, Δ. A 
bandwidth needs to be chosen for the KDE. A compromise solution has to 
be adopted since a very narrow window (bwe0:01) perfectly represents 
the marginal functions but does not allow the extrapolation to values 
slightly outside the range. Conversely, a very large bandwidth does not 
adequately represent the marginal distributions. In this case, an Epa
nechnikov kernel with unitary bandwidth was selected. The use of a 
unitary bandwidth (bw) is standard in several statistics programs. This 
choice ensures that there are no differences in the tails between the 
hindcast and simulated data. It also avoids the simulation of data too far 
from the range of the original data values. Fig. 7 shows the copula 
function of storms duration and interarrival times from hindcast data 
and simulation. As it can be observed in Fig. 7 the empirical joint dis
tribution function of both time series have similar patterns. The differ
ences in the diagonal are mainly due to the KDE bandwidth as previously 
discussed. 

The value of θc was obtained following a Canonical Maximum 
Likelihood (CML) method. The Kendall’s τ, the dependency parameter 
for the Clayton copula θc related to it (θc ¼ 2τ=ð1 � τÞ), and the 
Spearman’s ρs, are given in Table 1. As it can be observed, θc � 0 which 
suggests a weak association for winter/spring. During summer/fall, a 
significant negative association is found which indicates that as the rank 
on one of the varibles increases, the other one decreases. The absence of 
storms during some seasons can difficult the analysis. In those cases, it is 
better to extend the climatic periods from seasons to semi-annual or 
yearly periods. 

3.3. Univariate non-stationary probabilistic models 

The empirical distribution of the significant wave height FHs is fitted 
to a non-stationary mixture distribution composed by a Lognormal 
distribution in the central regime and a Generalized Pareto Distribution 
for each tail (Eqs. (5) and (6)). Under storm conditions, FHs

s 
is calculated 

as described by Equation (8). Fs
Tp 

is fitted to a non-stationary Lognormal 
distribution (Eq. (9)) and Fs

θm 
is given by a stationary mixture distribu

tion of 2-Truncated-Normal distributions (Eqs. (10) and (11)) with the 
aim at reproducing the clear bimodal wave climate observed in this case. 

The parameters of the expansion of non-stationary distributions as 
Fourier series truncated to the fourth order, are estimated by the 
negative log-likelihood function and the Bayesian Information Criteria. 
The values of the obtained coefficients are presented in Appendix B. 

Fig. 8a presents a range of percentiles of the non-stationary empirical 
and fitted CDF of the significant wave height. It can be observed that the 
selected theoretical distribution adequately reproduces the behavior of 
the hindcast data. Fig. 8b and 8c presents the empirical and fitted CDFs 
under storm conditions Fs

Tp 
and Fs

θm
, respectively. The mean direction 

was found to be adequately reproduced with a stationary mixture 
distribution. 

Fig. 9 presents the Q-Q plots of the analyzed wave variables. As it is 
observed in panels (a) and (b), the time-dependent data is classified by 
months where the non-stationary probability models are assumed to be 
stationary. The time period of this classification depends on the Fourier 
order used in the analysis. In this case, the fourth order was selected 
meaning that the probability model can capture from annual variability 
up until seasonal variability. As it is observed, good fits between the 
empirical distribution functions and the selected mixed probability 
models are obtained. For θs

m a larger variability is observed in the tails 
than for Hm0 and Ts

p. 

3.4. Multivariate temporal dependence 

The time series Hs
sðtÞ, T

s
pðtÞ and θs

mðtÞ are transformed with Equation 
(12). The stationary and normalized series ZHs ðtÞ, ZTp ðtÞ and Zθm ðtÞ allow 
the calculation of the parameters of the VAR model used to characterize 
the multivariate temporal dependence of the series. 

4. Verification of storm shape, magnitude, potential damage 
and occurrence 

In the previous section we have presented statistical validations to 
assess whether the different fits proposed in the methodology were 
adequate, i.e. storm definition, bivariate ECDFs and non-stationary 

Fig. 7. Bivariate Empirical Cumulative Distribution Function (ECDF) (solid lines) and copula fit (dashed lines) of D and Δ for the selected climatic periods.  

Table 1 
Parameters of the copula fit θc, Kendall’s τ, Pearson ρp, and Spearman ρs, for the 
selected climatic periods.  

Season θc  τ ρs  

Summer/Fall � 0.4310 � 0.2747 � 0.4549 
Winter/Spring 0.0172 0.0085 0.0045  
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probabilistic models. This section tackles the issue of verifying the 
suitability of this methodology to reproduce the storm time series taking 
into account the storm shape, magnitude, potential damage and the 
probability of occurrence of events. 

To further investigate whether the model is capable to reproduce the 
intravariability of the multivariate storm events, a data reduction 
analysis based on clustering, as in De Leo et al. (2019), can be performed 
to the series of hindcast and simulated normalized storms. In this work, 
instead of using a clustering and classification space to distinguish 
patterns, we followed the approach of Baquerizo and Losada (2008) 
which uses Empirical Orthogonal functions (EOF) as a standard pro
cedure for data reduction in the euclidean space (see Appendix C). Each 
individual storm was nondimensionalized with respect to its corre
sponding d, Hs;max, Tp;max and θm;max. Fig. 10 presents the mean function 
and the first five eigenfunctions for H�s , T

�
p and θ�m. It can be observed that 

the 5th eigenfunction explains more than 80% of the variability for the 
hindcast data (αd) and more than 70% of the variability for the simu
lation (αs). Even though the explained variabilities (αd and αs) are not 
exactly the same, they are relatively close so that the eigenfunctions are 
represented together and it is possible to see their similitudes. Also 
presented in Fig. 10 are the probability distribution functions (CDF) of 
the coefficients or scores for which similitudes can be observed. 

It is observed that the shapes of the mean functions are quite similar 
between the hindcast and simulated data. Moreover, the eigenfunctions 
also reproduce the behavior of the deviation from them. As an example, 
the 1st eigenfunction captures approximately the 30% of the deviations 
from the mean Hs, for the hindcast data and simulation. In the case of the 
mean direction of the hindcast data, it can be observed that the first 
three eigenfunctions already account for the 97% of the deviation. 

The fact that the analysis performed with hindcast and simulation 

Fig. 8. Cumulative Distribution Functions of Hs, Ts
p and θs

m. (a) Iso-probability percentiles (5, 10, 25, 50, 75, 90, 95, 99, 99.5th) of the empirical and fitted non- 
stationary distributions for Hs. (b) Iso-probability percentiles (5, 10, 25, 50, 75, 90, 95th) of the ECDF and theoretical fit Fs

Tp
. (c) ECDF and theoretical fit Fs

θm
. 

Fig. 9. Q-Q plots of Hs, Ts
p and θs

m. The Q-Q plots for the non-stationary distributions (Hs and Ts
p) were computed monthly assuming stationarity. (a)Hs. The 

thresholds u1 and u2 are established at the limits of the lower tail, body and upper tail of the mixed distribution. (b)Ts
p and (c)θs

m. The plus symbol indicates the limit 
between the corresponding truncated normal distributions. 
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data, (i) shows similar eigenfunctions that explain about relatively 
similar percentages of variability and (ii) the CDFs of the coefficients are 
alike, is an indication that the model is capable to reproduce storms 
whose shapes diverge from the triangular or trapezoidal shape. 

The model does not only reproduce the intravariability of each of the 
time series under consideration but also their joint behavior. In Fig. 11, 
the joint distribution of (Hs, Tp) and (Hs, θm) obtained from available 

data and simulation is represented. The similarities between them show 
that the model captures the joint dependence of the variables that define 
the storms. 

In particular, the significant wave height, Hs, and the storm duration 
D, deserve a special reference, as they constitute key variables in the 
statistical behavior of the storms’ energetic content M, (Eq. (13)). 

Fig. 10. Empirical Ortogonal Functions for the normalized storm events (top) and CDFs of the corresponding coefficients or scores.  
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M¼
Z d

0

�
H2

s ðtÞ � H2
s;uðtÞ

�
dt; (13)  

where d is the duration of the storm. In this work, the formula of M used 
by other authors as storm magnitude (De Michele et al., 2007) has been 
changed to take into account the energy content (proportional to the 
square of the significant wave height) throughout the storm duration. 
Fig. 12 shows that the energy content of the simulated data is equivalent 
to the registered storms. 

The linear wave power is an instantaneous measure of the storm and, 
therefore, quantifies the interdependence of Hs with Tp (Eq. (14)) in a 
single value (Corbella and Stretch, 2013). We also extend this concept 
including the storm duration and the incident wave direction as: 

P¼
Z d

0
EðtÞ ⋅ cgðtÞdt¼

Z d

0

�
1

16
ρgHsðtÞ2

�
gTpðtÞ

4π cosðθnÞdt; (14)  

where g is the gravitational acceleration, ρ is the water density and θn is 
the angle with respect to the normal direction to the shore. In this case 
we have considered a W-E shore orientation and therefore, only the 
waves within θm 2 ðπ =2;3π =2Þ were considered. Fig. 12 shows that the 
simulated storms yield a similar behavior to the historical data. 

5. Example of a damage evolution model 

The proposed simulation model has been used to study the damage 
evolution in a rubble-mound breakwater triggered by an initial damage, 
D�0, measured at a certain stage. This process is stochastic in nature, as 
both the loadings and the armor conditions are random themselves. 
Castillo et al. (2012) described the essential elements in a damage 
progression model. They also proposed a stochastic approach for 

damage accumulation in ruble-mound breakwaters under certain 
probabilistic assumptions. 

In this work, for the sake of simplicity, we adopt a law describing the 
mean damage progression obtained from the best fit to empirical data. It 
is also hypothesized that every time the breakwater suffers any damage, 
it attains an equilibrium position. This means that only the same and 
more energetic sea states than those that produced the damage are 
capable of increasing it. 

5.1. Damage produced by a sequence of sea states 

The damage, D�, is measured in terms of the dimensionless eroded 
cross-section area, D� ¼ Ae=D2

50, where Ae is the eroded area and D50 is 
the nominal stone diameter. We used a cumulative damage curve for 
irregular waves proposed by Melby and Kobayashi (1999) to describe 
the damaged produced on the structure during a sea state with normal 
incidence (of duration dt and characterized by the values of its signifi
cant wave height, Hs, and peak period, Tp) as a function of the previous 
damage, D�ðtÞ, the stability number, Ns, and the number of waves in the 
sea state, tw: 

D�ðt þ dtÞ ¼
h
D�ðtÞ1=b

þ
�
a⋅N5

s

�1=b⋅tw

ib
if Ns � Ns0; (15)  

where a and b are empirical coefficients, the number of waves in the sea 
state is estimated as tw ¼ dt=Tp and the stability number is given by: 

Ns¼
Hs

Γ⋅D50
; (16)  

with Γ being the relative excess of specific weight, Γ ¼ ðγa � γwÞ=γw, 
where γa and γw are, respectively, the specific weights of the armor and 

Fig. 11. Bivariate ECDF of hindcast data (solid lines) and simulation (dashed lines) for Hs (m), Tp (s) and θ (∘) during storm conditions.  

Fig. 12. Bivariate ECDF of hindcast data (solid lines) and simulation (dashed lines) for d, Hs;max, M and P.  
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the water. Ns0 is the value of the stability number that induced damage 
during previous sea states. 

This model, built as indicated by Castillo et al. (2012), involves a set 
of independent dimensionless variables according to the Pi-Buckingham 
theorem and guarantees that the expression fulfills a compatibility 
condition which ensures that the damage produced during two loading 
cycles of given durations is equal to the sum of the damages produced 
during their individual durations. 

5.2. Damage produced by a sequence of storm events 

In order to describe the damage progression during a series of storms, 
based on Losada (2001) and Baquerizo and Losada (2008), we consider 
every storm as a sequence of sea states. Then, the accumulated damage, 
DS�nðtÞ, at the n-th storm given by ns sea states, ðHsðtiÞ;TpðtiÞÞ for i ¼ 1;… 
; ns is: 

DS�n ¼
��

DS�n� 1

�1=b
þ
Xns

i¼1

��
a⋅Ns

�
ti

�5�1=b

⋅tw

�

ti

��b

(17)  

where DS�n� 1 is the damage caused by the previous storm. 

5.3. Breakwater damage progression 

We consider an ideal breakwater located at a water depth equal to 
14 m in the coast of Motril (Granada), with D50 ¼ 1:16 m, slope 1 : 2 and 
Γ ¼ 1:66. These are the same characteristics as the structure studied by 
Sousa and Santos (2006) who used the empirical formula given by Melby 
and Kobayashi (1999) with a ¼ 0:011 and b ¼ 0:5. 

Following the methodology presented in this work, we obtained a 
large number of simulations (500) of a 200-years time series of storm 
events and propagated them to the coast by means of linear theory. For 
each simulation, we estimated the time-evolving damage of the break
water as described by Equation (17). 

Based on the empirical results of Melby and Kobayashi (1999), we 
adopted D�A ¼ 6 as the admissible level of failure and D�D ¼ 12 as the 
destruction level. Fig. 13 shows, for three different simulations, the 
accumulated damage evolution. It can be observed that for the three 
cases, the admissible damage is achieved during the first seven storms. 
The time of destruction varies in these examples from the beginning of 
the 7th year, with the destruction occurring during the 14th storm, to the 
end of the 22th year on the 60th storm and the beginning of the 38th year, 
after the breakwater was loaded by 86 storms. 

Fig. 14 shows the probability distribution functions of the times of 
occurrence of admissible damage, TA, and destruction, TD. It can be 
observed that the probability that the time of admissible damage occurs 
in the first seven years is approximately 0.6. Also represented in Fig. 14, 
is the exceedance probability of time to destruction if a repair or 
maintenace strategy is implemented every 7 years, where the exceed
ance probability of time to destruction, TD, is periodically reset to zero. 

Therefore, the analysis of damage using a probabilistic approach and 
taking into account the temporal evolution of the storms provides rich 
information for the different stages of the breakwater ranging from no 
damage to serviceability and ultimate limit states. It allows to design a 
breakwater considering the possibility of implementing management 
decisions and repair strategies when the breakwater attains a certain 
prefixed level of damage. 

6. Discussion 

The proposed methodology is based on the assumption that storms 
are rare events and, therefore, the number of occurrences follows a 
Poisson distribution. A constant parameter λ is adopted, however, its 
value may vary along the year. The consideration of seasons to char
acterize the random vector (D, Δ) that is used to redistribute storms 
along the year, allows to take into consideration that, in fact, λ varies in 
time with higher values during the more severe seasons and is as a 
nonhomogeneous Poisson process. The ability of the model to reproduce 
this behavior can be seen in Fig. 15 where monthly number of storms are 
shown for hindcast and simulated data. 

In the case under analysis two climate seasons were chosen to 
characterize the time variability of the random vector (D,Δ). This choice 
responds to the need of having enough data in each considered season 
and also to the fact that climate variability in Mediterranean semiarid 
zones does not really follow the traditional four seasons climate. The 
selection of the climate periods under analysis affects the distribution of 
events throughout the year. As it can be observed in Fig. 15, during the 
months of June until November (Summer/Fall panel of Figs. 6 and 7) the 
simulation generally presents a slightly higher number of events and 
deviation than the hindcast data. This is due to the fact that the copula 
model is being characterized with 14 storm events and a higher sample 
would be needed to get a better copula fit. 

In addition, during the other analyzed season (from December until 
May), the simulation generally presents slightly lower mean number of 
events and lower deviations than the hindcast data. Indeed, the hindcast 
data shows a large deviation during this period suggesting a strong 
interannual variability during the Winter/Spring period which, given 
the length of the hindcast dataset and the methodology proposed in this 
work, the model is not able to capture. 

This study proposes the long-term simulation of extreme events and 
their temporal evolution. The statistical characterization of the different 
steps is done with the extracted storms from hindcast data and therefore 
the sample size is reduced considerably from the initial time series. This 
hinders the capacity of the model to capture temporal variability beyond 
the seasonal variation. Longer time series would be needed to account 
for interannual, decadal or multidecadal temporal variability. 

At this selected site, two mean incoming sea state directions alternate 
(F�elix et al., 2012) with values close to 100∘ and 250∘ and no clear dif
ferences in trends can be observed along the year. At other locations, 
non-stationary univariate models may be more appropriate (see Men
donça et al. (2012)). 

Regarding the storm definition, the methodology presented in this 
work helps the user in the selection of the values (Hs;u, d0, δ0) that define 
the storm events. Its application, however, needs the knowledge of the 
climatological processes on the study site and the expert vision on the 
particular problem that is being studied. For the example, in order to 
analyze breakwater damage evolution, a relatively high value of Hs;u, 
close to values capable to initiate the damage is required, while for 
coastal applications such as beach retreat assessment, smaller values are 

Fig. 13. Accumulated damage evolution for three 200-years time series simu
lation of storm events. 
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chosen. This also applies to the chosen values of d0 and δ0 where man
agement strategies need to be taken into account. 

The threshold Hs;u ¼ 2:4 m selected in the results, corresponds to the 
97:3th percentile of all the data and it is most of the year above the 95th 
percentile. This value, obtained with a methodology that allows to 
narrow down the possible valid values, is within the range of the 
different percentile values found in literature (90 � 99:5th). If the se
lection would have been done in the traditional way e.g. as the 95th 
percentile of the mean regime, a threshold close to 2 m, that is out of the 
nonrejection region for the majority the range of tested values of d0 and 
δ0 (see Fig. 4), would have been obtained. This example brings to light 
that commonly used criteria to fix the threshold to define storm events 
(i.e. a given percentile value) does not guarantee that the statistical 
assumptions are fulfilled. 

The method has also been applied to another location in the Anda
lusian Atlantic Ocean (AAO; 6.50∘W - 36.50∘N) where sea climate is 
rather severe, with values of the significant wave height above 2 m (90th 
percentile). Under these circumstances, for δ0 ¼ 24 h, the nonrejection 
region where ε� ¼ jλ � 1 =δj=λ > 0:5 is very limited. In this case only for 
relatively high thresholds (e.g. Hs;u � 2:9 m - 97:7th percentile and d0 ¼

51 h, Hs;u � 3:5 m - 98:5th percentile and d0 ¼ 33 h) the hypothesis 
cannot be rejected, which leads to low values of λ (close to one) and, 
therefore, to small size samples that reduce the confidence of the esti
mation of the model parameters (Fig. 16). 

7. Conclusions 

This work proposes a site specific methodology to define storm 
events and to characterize and simulate multivariate wave series under 
storm conditions from historical or hindcast sea state data. 

The procedure to select storm events is based on the joint definition 
of the parameters ðHs;u; d0; δ0Þ and ensures that the hypotheses under
lying the analysis of rare events, namely that the number of occurrence 
of events is a Poisson process and that the elapsing time between events 
follows an exponential distribution, are fulfilled. This methodology en
tails an advance in threshold selection by introducing the dependencies 
with the minimum storm duration and interarrival times and allows to 
narrow down the optimal values that fulfill the underlying assumptions. 

The stochastic characterization of wave climate during storm con
ditions accounts for: (i) the frequency, persistence and elapsing time 
between consecutive storms, which is reproduced fairly well using a 
copula model and where the storm events are indirectly treated as a 
nonhomogeneous Poisson process; (ii) the intensity of the storms, whose 
probability at the tails and body is adequately reproduced by non- 
stationary mixture probability models; and, (iii) the shape of the 
storms, where the multivariate dependencies and their intravariability 
are achieved with a vector autoregressive model. Given the adequate 
characterization and simulation of wave climate, the model is able to 
reproduce other dependent non-linear variables such as the energetic 
content and the wave power and therefore, it can be applied to perform a 

Fig. 14. Empirical Cumulative Distribution Function (ECDF) and fit of TA and TD and exceedance probability of time to destruction under a given repair/main
tenance strategy. 

Fig. 15. Monthly average number of storms for hindcast and simulated data including confidence intervals (standard deviation).  
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probabilistic analysis of damage progression in maritime structures. 
The methodology was applied as an example to assess the damage 

progression of a breakwater located in the coast of Granada, Spain. The 
results show that the proposed methodology allows for the assessment of 
the damage evolution in the structure and provides a tool to efficiently 
check different management and repair strategies which can signifi
cantly improve the decision-making process of coastal engineers and 
managers. 
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Appendix A. Vector Autoregressive model 

We denote the values of the variables at time ti as y1
i ¼ ZHs ðtiÞ, y2

i ¼ ZTp ðtiÞ, y3
i ¼ Zθm ðtiÞ and Yi ¼ ðy1

i y2
i y3

i Þ
T where T stands for the vector trans

position. The dependence in time and between wave data variables in the VAR(q) model is given by: 

Yi¼ cþ A1Yi� 1 þ A2Yi� 2 þ…:þ AqYi� q þ ei; (A.1)  

where c ¼ ðc1c2c3Þ
T contains the mean values of the variables, Am, m ¼ 1;…; q are the 3� 3 coefficients matrices and ei ¼ ðe1

i e2
i e3

i Þ
T is the vector with 

the white noise error terms. Using equation (A.1) to relate data at an instant ti to their previous q values, for i ¼ qþ 1;…;N, where N is the length of the 
record, we obtain Y ¼ AXþ E, where Y ¼ ðYqþ1Yqþ2…YNÞ, X ¼ ðXqþ1Xqþ2…XNÞ, with Xi ¼ ð1YT

i� 1…YT
i� qÞ

T, A ¼ ðA1A2…AqÞ and E ¼ ðeqþ1eqþ2…eNÞ. 
The solution is obtained by means of minimum least square errors as A ¼ YXTðXXTÞ

� 1, where E ¼ Y � AX. A detailed description can be found e.g. 
in (Lütkepohl, 2005). 

Fig. 16. The left-hand panel presents the nonrejection regions of the hypothesis pΔ > α (solid colored line) and pN > α (dashed colored line) for a range of significant 
wave height thresholds, Hs;u, and minimum storm durations, d0, for the case study AA0. The different colors represent different cases of minimum interarrival time δ0. 
The right-side panel depicts the nonrejection region of the hypothesis pΔ > α (solid green line) and pN > α (dashed green line) for δ0 ¼ 24 h. Grayscale contours of 
jλ � 1 =δj=λ and isolines of the mean annual number of storm events, λ for the case study AA0. The star symbols indicate possible valid values (Hs;u, d0). (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Appendix B. Parameters of the fitted distribution functions 

Tables B.2 and B.3 show the information about the estimated parameters of the marginal distributions of Hs and Ts
p, respectively. The Fourier order 

of every variable was selected according to the minimum BIC. 
In the case of Hs (Table B.2), the normalized and non-stationary thresholds for the separation of the tails and the central regime are z1 ¼ � 2:2699 

and z2 ¼ � 0:1962. The dimensional thresholds are retrieved applying ui ¼ F� 1
LN ðΦðziÞÞ for i the lower and upper threshold.  

Table B.2 
Parameters of marginal fit for Hs. The mixture model comprises a the Generalized Pareto distribution (GP) (NF ¼ 3) for minima and maxima and a Lognormal dis
tribution (LN) (NF ¼ 4) for the central regime. The estimated parameters of the distributions are: (i) shape, ξLN ; (ii) location, μLN ; and, (iii) and scale, σLN of the LN 
distribution, while ξGPM is the shape parameter of the maxima. The coefficients al and bl represent the Fourier expansion as shown in Eq. (3).   

ξLN  μLN  σLN  ξGPM    

bl  al  bl  al  bl  al  bl  

0 0.0830 – � 0.0296 – 0.6909 – � 0.0123 – 
1 0.0495 � 0.0209 9.12e-5 � 0.0170 0.0625 0.1190 0.0071 0.0014 
2 � 0.0214 0.0068 � 4.42e-4 0.0106 4.27e-4 � 0.0101 � 0.0125 0.0125 
3 � 0.0097 0.0141 � 0.0038 0.0021 0.0013 � 0.0098 � 0.0672 � 0.0033 
4 0.0048 � 0.0205 0.0012 � 0.0107 � 0.0064 � 2.09e-4 – –   

Table B.3 
Parameters of marginal fit for Ts

p. The model was fitted with a LN distribution.   

ξLN  μLN  σLN    

bl  al  bl  al  bl  

0 0.1991 – 4.2685 – 3.6195 – 
1 � 0.0015 0.0485 � 0.4138 0.5317 0.5000 � 0.5000 
2 � 0.0161 0.0012 0.0143 0.2500 � 0.1705 � 0.0196  

The mean wave direction over the threshold, θs
m, was fitted using two stationary truncated normal distributions where μ, σ and α are mean, 

standard deviation and weight of every distribution function (μTN1
¼ 1:8004, σTN1 ¼ 0:0763, α1 ¼ 0:75, μTN2

¼ 4:1702, σTN2 ¼ 0:3615, and α2 ¼

0:25). 

Appendix C. Empirical orthogonal functions as best approach functions 

The Emprical Ortogonal Functions is a methodology based on linear algebra. Its application to the analysis of a series of N observations of a discrete 
function y, evaluated at M values ðt1;⋯; tMÞ, yj ¼ ðyjðt1Þ; yjðt2Þ;⋯; yjðtMÞÞ (j ¼ 1,…,N) whose mean values are c ¼ ðc1;⋯; cMÞ can be interpreted as the 
search of best approach M discrete functions (vectors in RM) fEkg that allow to express any of the observations yj as a linear combination of them: 

yj¼ cþ z1
j E1 þ⋯þ zM

j EM ; (C.1)  

where zk
j is the coefficient (also called score) of vector Ek to reproduce the jth observation. ðÞT stands for the transpose vector. 

The discrete functions fEkg are obtained as the eigenvectors of the matrix AAT where A ¼ Y=
ffiffiffiffi
N
p

and Y ¼ ðyjðtiÞ � ciÞ is the M� N matrix that 
contains the demeaned values of the observations. For simplicity of notation we are assuming that the eigenfunctions Ek of AAT are sorted according to 
their respective eigenvalues fλjgwith λ1 > λ2 > … > λM. We call ym

j ¼ cþ z1
j E1 þ⋯þ zm

j Em to the sum (Equation (C.1)) truncated to the first m values. 
The total mean squared error made by using this approach is: 

εm¼ λmþ1 þ⋯þ λM : (C.2) 

Calling Vm ¼ ðλmþ1 þ⋯ þ λMÞ=ðλ1 þ⋯ þ λMÞ, the value 1 � Vm measures the deviation of data to the approximation made, that is, what cannnot 
be represented with the first m eigenfunctions and, therefore, αm ¼ 100� Vm express the percentage of variability explained with them. 

The values fzk
j gk can be considered as a sample of the random variable Zj, that represent the value of the coefficient of Ej in the approximation. By 

randomly choosing their values it is possible to simulate the dimensionless shape of a storm, in a similar way to that of Baquerizo and Losada (2008). 
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