124 research outputs found

    Phonon Mode Spectroscopy, Electron-Phonon Coupling and the Metal-Insulator Transition in Quasi-One-Dimensional M2Mo6Se6

    Full text link
    We present electronic structure calculations, electrical resistivity data and the first specific heat measurements in the normal and superconducting states of quasi-one-dimensional M2Mo6Se6 (M = Tl, In, Rb). Rb2Mo6Se6 undergoes a metal-insulator transition at ~170K: electronic structure calculations indicate that this is likely to be driven by the formation of a dynamical charge density wave. However, Tl2Mo6Se6 and In2Mo6Se6 remain metallic down to low temperature, with superconducting transitions at Tc = 4.2K and 2.85K respectively. The absence of any metal-insulator transition in these materials is due to a larger in-plane bandwidth, leading to increased inter-chain hopping which suppresses the density wave instability. Electronic heat capacity data for the superconducting compounds reveal an exceptionally low density of states DEF = 0.055 states eV^-1 atom^-1, with BCS fits showing 2Delta/kBTc >= 5 for Tl2Mo6Se6 and 3.5 for In2Mo6Se6. Modelling the lattice specific heat with a set of Einstein modes, we obtain the approximate phonon density of states F(w). Deconvolving the resistivity for the two superconductors then yields their electron-phonon transport coupling function a^2F(w). In Tl2Mo6Se6 and In2Mo6Se6, F(w) is dominated by an optical "guest ion" mode at ~5meV and a set of acoustic modes from ~10-30meV. Rb2Mo6Se6 exhibits a similar spectrum; however, the optical phonon has a lower intensity and is shifted to ~8meV. Electrons in Tl2Mo6Se6 couple strongly to both sets of modes, whereas In2Mo6Se6 only displays significant coupling in the 10-18meV range. Although pairing is clearly not mediated by the guest ion phonon, we believe it has a beneficial effect on superconductivity in Tl2Mo6Se6, given its extraordinarily large coupling strength and higher Tc compared to In2Mo6Se6.Comment: 16 pages, 13 figure

    Structure and Dynamics of Superconducting NaxCoO(2) Hydrate and Its Unhydrated Analog

    Full text link
    Neutron scattering has been used to investigate the crystal structure and lattice dynamics of superconducting Na0.3CoO2 1.4(H/D)2O, and the parent Na0.3CoO2 material. The structure of Na0.3CoO2 consists of alternate layers of CoO2 and Na and is the same as the structure at higher Na concentrations. For the superconductor, the water forms two additional layers between the Na and CoO2, increasing the c-axis lattice parameter of the hexagonal P63/mmc space group from 11.16 A to 19.5 A. The Na ions are found to occupy a different configuration from the parent compound, while the water forms a structure that replicates the structure of ice. Both types of sites are only partially occupied. The CoO2 layer in these structures is robust, on the other hand, and we find a strong inverse correlation between the CoO2 layer thickness and the superconducting transition temperature (TC increases with decreasing thickness). The phonon density-of-states for Na0.3CoO2 exhibits distinct acoustic and optic bands, with a high-energy cutoff of ~100 meV. The lattice dynamical scattering for the superconductor is dominated by the hydrogen modes, with librational and bending modes that are quite similar to ice, supporting the structural model that the water intercalates and forms ice-like layers in the superconductor.Comment: 14 pages, 7 figures, Phys. Rev. B (in press). Minor changes + two figures removed as requested by refere

    High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2

    Full text link
    While the layered 122 iron arsenide superconductors are highly anisotropic, unconventional, and exhibit several forms of electronic orders that coexist or compete with superconductivity in different regions of their phase diagrams, we find in the absence of iron in the structure that the superconducting characteristics of the end member BaPd2As2 are surprisingly conventional. Here we report on complementary measurements of specific heat, magnetic susceptibility, resistivity measurements, Andreev spectroscopy, and synchrotron high pressure x-ray diffraction measurements supplemented with theoretical calculations for BaPd2As2. Its superconducting properties are completely isotropic as demonstrated by the critical fields, which do not depend on the direction of the applied field. Under the application of high pressure, Tc is linearly suppressed, which is the typical behavior of classical phonon-mediated superconductors with some additional effect of a pressure-induced decrease in the electronic density of states and the electron-phonon coupling parameters. Structural changes in the layered BaPd2As2 have been studied by means of angle-dispersive diffraction in a diamond-anvil cell. At 12 GPa and 24.2 GPa we observed pressure induced lattice distortions manifesting as the discontinuity and, hence discontinuity in the Birch-Murnaghan equation of state. The bulk modulus is B0=40(6) GPa below 12 GPa and B0=142(3) GPa below 27.2 GPa

    Evidence of Andreev bound states as a hallmark of the FFLO phase in κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2

    Full text link
    Superconductivity is a quantum phenomena arising, in its simplest form, from pairing of fermions with opposite spin into a state with zero net momentum. Whether superconductivity can occur in fermionic systems with unequal number of two species distinguished by spin, atomic hyperfine states, flavor, presents an important open question in condensed matter, cold atoms, and quantum chromodynamics, physics. In the former case the imbalance between spin-up and spin-down electrons forming the Cooper pairs is indyced by the magnetic field. Nearly fifty years ago Fulde, Ferrell, Larkin and Ovchinnikov (FFLO) proposed that such imbalanced system can lead to exotic superconductivity in which pairs acquire finite momentum. The finite pair momentum leads to spatially inhomogeneous state consisting of of a periodic alternation of "normal" and "superconducting" regions. Here, we report nuclear magnetic resonance (NMR) measurements providing microscopic evidence for the existence of this new superconducting state through the observation of spin-polarized quasiparticles forming so-called Andreev bound states.Comment: 6 pages, 5 fig

    Antiferromagnetic Phases in the Fulde-Ferrell-Larkin-Ovchinnikov State of CeCoIn_5

    Full text link
    The antiferromagnetic (AFM) order in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state is analyzed on the basis of a Ginzburg-Landau theory. To examine the possible AFM-FFLO state in CeCoIn_5, we focus on the incommensurate AFM order characterized by the wave vector Q = Q_{0} \pm q_inc with Q_0 =(\pi,\pi,\pi) and q_inc \parallel [110] or [1-10] in the tetragonal crystal structure. We formulate the two component Ginzburg-Landau theory and investigate the two degenerate incommensurate AFM order. We show that the pinning of AFM moment due to the FFLO nodal planes leads to multiple phases in magnetic fields along [100] or [010]. The phase diagrams for various coupling constants between the two order parameters are shown for the comparison with CeCoIn_5. Experimental results of the NMR and neutron scattering measurements are discussed.Comment: 6pages, Proceedings of ICHE2010, To appear in J. Phys. Soc. Jpn. Supp

    Ginzburg-Landau Analysis for the Antiferromagnetic Order in the Fulde-Ferrell-Larkin-Ovchinnikov Superconductor

    Full text link
    Incommensurate antiferromangetic (AFM) order in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductor is investigated on the basis of the Ginzburg-Landau theory. We formulate the two component Ginzburg-Landau model to discuss two degenerate incommensurate AFM states in the tetragonal crystal structure. Owing to the broken translation symmetry in the FFLO state, a multiple phase diagram of single-q phase and double-q phase is obtained under the magnetic field along [100] or [010] direction. Magnetic properties in each phase are investigated and compared with the neutron scattering and NMR measurements for a heavy fermion superconductor CeCoIn_5. An ultrasonic measurement is proposed for a future experimental study to identify the AFM-FFLO state. The field orientation dependence of the AFM order in CeCoIn_5 is discussed.Comment: 8 page

    Pairing competition in a quasi-one-dimensional model of organic superconductors (TMTSF)2X_{2}X in magnetic field

    Full text link
    We microscopically study the effect of the magnetic field (Zeeman splitting) on the superconducting state in a model for quasi-one-dimensional organic superconductors (TMTSF)2X_{2}X. We investigate the competition between spin singlet and spin triplet pairings and the Fulde-Ferrell-Larkin-Ovchinnikov(FFLO) state by random phase approximation. While we studied the competition by comparison with the eigenvalue of the gap equation at a fixed temperature in our previous study (Phys. Rev. Lett. \textbf{102} (2009) 016403), here we obtain both the TcT_c for each pairing state and a phase diagram in the TT(temperature)-hzh_z(field)-VyV_y(strength of the charge fluctuation) space. The phase diagram shows that consecutive transitions from singlet pairing to the FFLO state and further to Sz=1S_z=1 triplet pairing can occur upon increasing the magnetic field when 2kF2k_{F} charge fluctuations coexist with 2kF2k_{F} spin fluctuations. In the FFLO state, the singlet d-wave and Sz=0S_{z}=0 triplet ff-wave components are strongly mixed especially when the charge fluctuations are strong.Comment: 11 pages, 9 figure

    A quantum magnetic analogue to the critical point of water

    Full text link
    At the familiar liquid-gas phase transition in water, the density jumps discontinuously at atmospheric pressure, but the line of these first-order transitions defined by increasing pressures terminates at the critical point, a concept ubiquitous in statistical thermodynamics. In correlated quantum materials, a critical point was predicted and measured terminating the line of Mott metal-insulator transitions, which are also first-order with a discontinuous charge density. In quantum spin systems, continuous quantum phase transitions (QPTs) have been investigated extensively, but discontinuous QPTs have received less attention. The frustrated quantum antiferromagnet SrCu2_2(BO3_3)2_2 constitutes a near-exact realization of the paradigmatic Shastry-Sutherland model and displays exotic phenomena including magnetization plateaux, anomalous thermodynamics and discontinuous QPTs. We demonstrate by high-precision specific-heat measurements under pressure and applied magnetic field that, like water, the pressure-temperature phase diagram of SrCu2_2(BO3_3)2_2 has an Ising critical point terminating a first-order transition line, which separates phases with different densities of magnetic particles (triplets). We achieve a quantitative explanation of our data by detailed numerical calculations using newly-developed finite-temperature tensor-network methods. These results open a new dimension in understanding the thermodynamics of quantum magnetic materials, where the anisotropic spin interactions producing topological properties for spintronic applications drive an increasing focus on first-order QPTs.Comment: 8+4 pages, 4+3 figure
    corecore