Abstract

The antiferromagnetic (AFM) order in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state is analyzed on the basis of a Ginzburg-Landau theory. To examine the possible AFM-FFLO state in CeCoIn_5, we focus on the incommensurate AFM order characterized by the wave vector Q = Q_{0} \pm q_inc with Q_0 =(\pi,\pi,\pi) and q_inc \parallel [110] or [1-10] in the tetragonal crystal structure. We formulate the two component Ginzburg-Landau theory and investigate the two degenerate incommensurate AFM order. We show that the pinning of AFM moment due to the FFLO nodal planes leads to multiple phases in magnetic fields along [100] or [010]. The phase diagrams for various coupling constants between the two order parameters are shown for the comparison with CeCoIn_5. Experimental results of the NMR and neutron scattering measurements are discussed.Comment: 6pages, Proceedings of ICHE2010, To appear in J. Phys. Soc. Jpn. Supp

    Similar works

    Full text

    thumbnail-image

    Available Versions