99 research outputs found

    Preliminary Tc calculations for iron-based superconductivity in NaFeAs, LiFeAs, FeSe and nanostructured FeSe/SrTiO3 Superconductors

    Full text link
    Many theoretical models of iron-based superconductors have been proposed but Tc calculations based on the models are usually missing. We have chosen two models of iron-based superconductors in the literature and then compute the Tc values accordingly: Recently two models have been announced which suggest that superconducting electron concentration involved in the pairing mechanism of iron-based superconductors may have been underestimated, and that the antiferromagnetism and the induced xy potential may even have a dramatic amplification effect on electron-phonon coupling. We use bulk FeSe, LiFeAs and NaFeAs data to calculate the Tc based on these models and test if the combined model can predict the superconducting transition temperature (Tc) of the nanostructured FeSe monolayer well. To substantiate the recently announced xy potential in the literature, we create a two-channel model to separately superimpose the dynamics of the electron in the upper and lower tetrahedral plane. The results of our two-channel model support the literature data. Our computational model takes into account this amplifying effect of antiferromagnetism and the correction of the electron-phonon scattering matrix together with the abnormal soft out-of-plane lattice vibration of the layered structure, which allows us to calculate theoretical Tc values of LiFeAs, NaFeAs and FeSe as a function of pressure that correspond reasonably well to the experimental values. More importantly, by taking into account the interfacial effect between an FeSe monolayer and its SrTiO3 substrate as an additional gain factor, our calculated Tc value is up to 91 K high, and provides evidence that the strong Tc enhancement recently observed in such monolayers with Tc reaching 100 K may be contributed from the electrons within the ARPES range.Comment: arXiv admin note: text overlap with arXiv:1905.1342

    Edge effect and significant increase of the superconducting transition onset temperature of 2D superconductors in flat and curved geometries

    Full text link
    In this paper, we present a simple method to model the curvature activated phonon softening in a 2D superconducting layer. The superconducting transition temperature Tc in the case of a 2D rectangular sheet, a hollow cylinder and a hollow sphere of one coherence length thickness is calculated by the quantum mechanical electron-phonon scattering matrix, and a series of collective lattice vibrations in the surface state. We will show that being extremely thin in a flat rectangular shape is not enough to significantly enhance the Tc through phonon softening. However, if a curvature is added, Tc can be strongly enhanced. The increase in Tc with respect to the bulk is greatest in a hollow sphere, intermediate in a hollow cylinder and weakest for the rectangular sheet, when systems of identical length scale are considered. In addition, we find that the edge effect of such a 2D sheet has a strong broadening effect on Tc in addition to the effect of order parameter phase fluctuations.Comment: Physica C, in pres

    Decoding 122-Type Iron-Based Superconductors: A Comprehensive Simulation of Phase Diagrams and Transition Temperatures

    Full text link
    Iron-based superconductors, a cornerstone of low-temperature physics, have been the subject of numerous theoretical models aimed at deciphering their complex behavior. In this study, we present a comprehensive approach that amalgamates several existing models and incorporates experimental data to simulate the superconducting phase diagrams of the principal 122-type iron-based compounds. Our model considers a multitude of factors including the momentum dependence of the superconducting gap, spin-orbital coupling, antiferromagnetism, spin density wave, induced XY potential on the tetrahedral structure, and electron-phonon coupling. We have refined the electron-phonon scattering matrix using experimental angle-resolved photoemission spectroscopy (ARPES) data, ensuring that all electrons pertinent to iron-based superconductivity are accounted for. This innovative approach allows us to calculate theoretical critical temperature Tc values for Ba1-xKxFe2As2, CaFe2As2 and SrFe2As2 as functions of pressure. These calculated values exhibit remarkable agreement with experimental findings. Furthermore, our model predicts that MgFe2As2 remains non-superconducting irrespective of the applied pressure. Given that 122-type superconductivity at low pressure or low doping concentration has been experimentally validated, our combined model serves as a powerful predictive tool for generating superconducting phase diagrams at high pressure. This study underscores that the high transition temperatures and the precise doping and pressure dependence of iron-based superconductors are intrinsically linked to an intertwined mechanism involving a strong interplay between structural, magnetic and electronic degrees of freedom

    ‘Fragile Superconductivity': A Kinetic Glass Transition in the Vortex Matter of the High-temperature Superconductor YBa2 Cu3O7-δ

    Get PDF
    Using high-resolution thermal expansion and magnetization measurements, we provide experimental evidence for a kinetic glass transition in the vortex matter of YBa2Cu3O7-δ with some disorder. This transition, which represents the true superconducting transition in a magnetic field, exhibits many of the features of the usual glass transition found in supercooled structural liquids such as window glass. We demonstrate, using both kinetic and thermodynamic criteria, that this vortex matter is the most fragile system known to date, which we argue makes it possible to investigate the behavior very close to the Kauzmann temperature. Vortex matter, we suggest, may be a model system to study glassy behavior in general, which is expected to lead to a better understanding of the strong-fragile behavior in structural glasse

    Evolution of the specific-heat anomaly of the high-temperature superconductor YBa2Cu3O7 under influence of doping through application of pressure up to 10 GPa

    Full text link
    The evolution of the specific-heat anomaly in the overdoped range of a single crystal of the high-temperature superconductor YBa2Cu3O7 has been studied under influence of pressure up to 10 GPa, using AC calorimetry in a Bridgman-type pressure cell. We show that the specific-heat jump as well as the bulk Tc are reduced with increasing pressure in accordance with a simple charge-transfer model. This new method enables us through pressure-induced charge transfer to study the doping dependence of the superconducting transition, as well as the evolution of the superconducting condensation energy on a single stoichometric sample without adding atomic disorder.Comment: final version: J. Phys.: Condens. Matter 17 (2005) 4135-414
    corecore