89 research outputs found

    Low-Frequency Radio Transients in the Galactic Center

    Get PDF
    We report the detection of a new radio transient source, GCRT J1746-2757, located only 1.1 degrees north of the Galactic center. Consistent with other radio transients toward the Galactic center, this source brightened and faded on a time scale of a few months. No X-ray counterpart was detected. We also report new 0.33 GHz measurements of the radio counterpart to the X-ray transient source, XTE J1748-288, previously detected and monitored at higher radio frequencies. We show that the spectrum of XTE J1748-288 steepened considerably during a period of a few months after its peak. We also discuss the need for a more efficient means of finding additional radio transients

    An Optical and X-ray Examination of Two Radio Supernova Remnant Candidates in 30 Doradus

    Full text link
    The giant HII region 30 Doradus is known for its violent internal motions and bright diffuse X-ray emission, suggesting the existence of supernova remnants (SNRs), but no nonthermal radio emission has been detected. Recently, Lazendic et al. compared the H-alpha/H-beta and radio/H-alpha ratios and suggested two small radio sources to be nonthermal and thus SNR candidates; however, no optical or X-ray counterparts were detected. We have used high-resolution optical images and high-dispersion spectra to examine the morphological, spectral, and kinematic properties of these two SNR candidates, and still find no optical evidence supporting their identification as SNRs. We have also determined the X-ray luminosities of these SNR candidates, and find them 1-3 orders of magnitude lower than those commonly seen in young SNRs. High extinction can obscure optical and X-ray signatures of an SNR, but would prohibit the use of a high radio/H-alpha ratio to identify nonthermal radio emission. We suggest that the SNR candidate MCRX J053831.8-690620 is associated with a young star forming region; while the radio emission originates from the obscured star forming region, the observed optical emission is dominated by the foreground. We suggest that the SNR candidate MCRX J053838.8-690730 is associated with a dust/molecular cloud, which obscures some optical emission but not the radio emission.Comment: 13 pages, 2 figures, accepted for publication in the ApJ, Nov 10, 200

    Confronting the Superbubble Model with X-ray Observations of 30 Dor C

    Get PDF
    We present an analysis of XMM-Newton observations of the superbubble 30 Dor C and compare the results with the predictions from the standard wind-blown bubble model. We find that the observed X-ray spectra cannot be fitted satisfactorily with the model alone and that there is evidence for nonthermal X-ray emission, which is particularly important at > 4 keV. The total unabsorbed 0.1-10 keV luminosities of the eastern and western parts of the bubble are ~3 10^36 erg/s and ~5 10^36 erg/s, respectively. The unabsorbed 0.1-10 keV luminosity of the bubble model is 4 10^36 erg/s and so the power-law component contributes between 1/3 and 1/2 to the total unabsorbed luminosity in this energy band. The nature of the hard nonthermal emission is not clear, although recent supernovae in the bubble may be responsible. We expect that about one or two core-collapse supernovae could have occured and are required to explain the enrichment of the hot gas, as evidenced by the overabundance of alpha-elements by a factor of 3, compared to the mean value of 0.5 solar for the interstellar medium in the Large Magellanic Cloud. As in previous studies of various superbubbles, the amount of energy currently present in 30 Dor C is significantly less than the expected energy input from the enclosed massive stars over their lifetime. We speculate that a substantial fraction of the input energy may be radiated in far-infrared by dust grains, which are mixed with the hot gas because of the thermal conduction and/or dynamic mixing.Comment: 25 pages, 4 figures. To appear in The Astrophysical Journal, August 20, 2004 issu

    A Galactic O-Star Catalog

    Full text link
    We have produced a catalog of 378 Galactic O stars with accurate spectral classifications which is complete for V<8 but includes many fainter stars. The catalog provides cross-identifications with other sources; coordinates (obtained in most cases from Tycho-2 data); astrometric distances for 24 of the nearest stars; optical (Tycho-2, Johnson, and Stromgren) and NIR photometry; group membership, runaway character, and multiplicity information; and a web-based version with links to online services.Comment: 76 pages, 13 tables, and 3 figures. Accepted for publication in Astrophysical Journal. Online version of the catalog available at http://www.stsci.edu/~jmaiz/GOSmain.htm

    Thermal and Non-thermal X-Rays from the LMC Super Bubble 30 Dor C

    Full text link
    We report on the discovery of thermal and non-thermal X-rays from the shells of the super bubble (SB) 30 Dor C in the Large Magellanic Cloud (LMC). The X-ray morphology is a nearly circular shell with a radius of about 40 pc, which is bright on the northern and western sides. The spectra of the shells are different from region to region. The southern shell shows clear emission lines, and is well fitted with a model of a thin-thermal plasma (kT = 0.21keV) in non-equilibrium ionization (NEI) plus a power-law component. This thermal plasma is located inside of the H alpha emission, which is the outer edge of the shell of the SB. The northern and western sides of the SB are dim in H alpha emission, but are bright in non-thermal (power-law) X-rays with a photon index of 2.1-2.9. The non-thermal X-ray shell traces the outer boundary of the radio shell. These features of thin-thermal and non-thermal X-rays are similar to those of SN 1006, a prototype of synchrotron X-ray shell, but the non-thermal component of 30 Dor C is about ten-times brighter than that of SN 1006. 30 Dor C is the first candidate of an extragalactic SB, in which energetic electrons are accelerating in the shell. The age is much older than that of SN 1006, and hence the particle acceleration time in this SB may be longer than those in normal shell-like SNRs. We found point-like sources associated with some of tight star clusters. The X-ray luminosity and spectrum are consistent with those of young clusters of massive stars. Point-like sources with non-thermal spectra are also found in the SB. These may be background objects (AGNs) or stellar remnants (neutron stars or black holes).Comment: 11 pages, 6 figures, Accepted for publication in ApJ, the paper with full resolution images in http://www-cr.scphys.kyoto-u.ac.jp/member/bamba/Paper/30DorC.pd

    A VLA Search for Water Masers in Six HII Regions: Tracers of Triggered Low-Mass Star Formation

    Full text link
    We present a search for water maser emission at 22 GHz associated with young low-mass protostars in six HII regions -- M16, M20, NGC 2264, NGC 6357, S125, and S140. The survey was conducted with the NRAO Very Large Array from 2000 to 2002. For several of these HII regions, ours are the first high-resolution observations of water masers. We detected 16 water masers: eight in M16, four in M20, three in S140, and one in NGC 2264. All but one of these were previously undetected. No maser emission was detected from NGC 6357 or S125. There are two principle results to our study. (1) The distribution of water masers in M16 and M20 does not appear to be random but instead is concentrated in a layer of compressed gas within a few tenths of a parsec of the ionization front. (2) Significantly fewer masers are seen in the observed fields than expected based on other indications of ongoing star formation, indicating that the maser-exciting lifetime of protostars is much shorter in HII regions than in regions of isolated star formation. Both of these results confirm predictions of a scenario in which star formation is first triggered by shocks driven in advance of ionization fronts, and then truncated approximately 10^5 years later when the region is overrun by the ionization front.Comment: 30 pages, 20 figures, 3 tables. Accepted for publication by ApJ. Full resolution figures and PS and PDF versions with full-res figures available at http://eagle.la.asu.edu/healy/preprints/hhc0

    A multifrequency study of the active star forming complex NGC6357. I. Interstellar structures linked to the open cluster Pis24

    Get PDF
    We investigate the distribution of the gas (ionized, neutral atomic and molecular), and interstellar dust in the complex star forming region NGC6357 with the goal of studying the interplay between the massive stars in the open cluster Pis24 and the surrounding interstellar matter. Our study of the distribution of the ionized gas is based on narrow-band Hhalfa, [SII], and [OIII] images obtained with the Curtis-Schmidt Camera at CTIO, Chile, and on radio continuum observations at 1465 MHz taken with the VLA with a synthesized beam of 40 arcsec. The distribution of the molecular gas is analyzed using 12CO(1-0) data obtained with the Nanten radiotelescope, Chile (angular resolution = 2.7 arcmin). The interstellar dust distribution was studied using mid-infrared data from the GLIMPSE survey and far-infrared observations from IRAS. NGC6357 consists of a large ionized shell and a number of smaller optical nebulosities. The optical, radio continuum, and near- and mid-IR images delineate the distributions of the ionized gas and interstellar dust in the HII regions and in previously unknown wind blown bubbles linked to the massive stars in Pis24 revealing surrounding photodissociation regions. The CO line observations allowed us to identify the molecular counterparts of the ionized structures in the complex and to confirm the presence of photodissociation regions. The action of the WR star HD157504 on the surrounding gas was also investigated. The molecular mass in the complex is estimated to be (4+/-2)X10^5 Mo. Mean electron densities derived from the radio data suggest electron densities > 200 cm^-3, indicating that NGC6357 is a complex formed in a region of high ambient density. The known massive stars in Pis24 and a number of newly inferred massive stars are mainly responsible for the excitation and photodissociation of the parental molecular cloud.Comment: 16 pages, 9 figures. Accepted for publication in MNRA

    Hubble Space Telescope Photometry of Hodge 301: An "Old" Star Cluster in 30 Doradus

    Full text link
    We present Hubble Space Telescope Planetary Camera UVI data for the little-studied cluster Hodge 301 3' northwest of 30 Doradus' central ionizing cluster R136. The average reddening of Hodge 301 is found to be = (0.28+-0.05) mag from published infrared and ultraviolet photometry. Using two different sets of evolutionary models, we derive an age of ~ 20-25 Myr for Hodge 301, which makes it roughly 10 times as old as R136. Hodge 301 is the most prominent representative of the oldest population in the 30 Dor starburst region; a region that has undergone multiple star formation events. This range of ages is an important consideration for the modelling of starburst regions. Hodge 301 shows a widened upper main sequence largely caused by Be stars. We present a list of Be star candidates. The slope of the initial mass function for intermediate-mass main sequence stars ranging from 10 to 1.3 solar masses is found to be -1.4+-0.1 in good agreement with a Salpeter law. There is no indication for a truncation or change of slope of the IMF within this mass range. In accordance with the age of Hodge 301 no obvious pre-main-sequence stars are seen down to 1 solar mass. We estimate that up to 41+-7 stars with more than 12 solar masses may have turned into supernovae since the formation of the cluster. Multiple supernova explosions are the most likely origin of the extremely violent gas motions and the diffuse X-ray emission observed in the cluster surroundings.Comment: To appear in the Astronomical Journal (Feb 2000 issue). 16 pages in two-column style. 9 separate figures, in part in significantly reduced resolution for space reasons (bitmapped postscript or jpg

    An X-ray Census of Young Stars in the Massive Southern Star-Forming Complex NGC 6357

    Get PDF
    We present the first high spatial resolution X-ray study of the massive star forming region NGC 6357, obtained in a 38 ks Chandra/ACIS observation. Inside the brightest constituent of this large HII region complex is the massive open cluster Pismis 24. It contains two of the brightest and bluest stars known, yet remains poorly studied; only a handful of optically bright stellar members have been identified. We investigate the cluster extent and Initial Mass Function and detect ~800 X-ray sources with a limiting sensitivity of 10^{30} ergs s^{-1}; this provides the first reliable probe of the rich intermediate-mass and low-mass population of this massive cluster, increasing the number of known members from optical study by a factor of ~50. The high luminosity end (log L_h[2-8 keV]\ge 30.3 ergs s^{-1}) of the observed X-ray luminosity function in NGC 6357 is clearly consistent with a power law relation as seen in the Orion Nebula Cluster and Cepheus B, yielding the first estimate of NGC 6357's total cluster population, a few times the known Orion population. We investigate the structure of the cluster, finding small-scale substructures superposed on a spherical cluster with 6 pc extent, and discuss its relationship to the nebular morphology. The long-standing Lx - 10^{-7}L_{bol} correlation for O stars is confirmed. Twenty-four candidate O stars and one possible new obscured massive YSO or Wolf-Rayet star are presented. Many cluster members are estimated to be intermediate-mass stars from available infrared photometry (assuming an age of 1 Myr), but only a few exhibit K-band excess. We report the first detection of X-ray emission from an Evaporating Gaseous Globule at the tip of a molecular pillar; this source is likely a B0-B2 protostar.Comment: 64 pages (double columns), 9 table, 17 figures (reduced resolution), ApJ accepted. Please contact J. Wang for full table

    Spitzer 70 and 160-micron Observations of the Extragalactic First Look Survey

    Get PDF
    We present Spitzer 70um and 160um observations of the Spitzer extragalactic First Look Survey (xFLS). The data reduction techniques and the methods for producing co-added mosaics and source catalogs are discussed. Currently, 26% of the 70um sample and 49% of the 160um-selected sources have redshifts. The majority of sources with redshifts are star-forming galaxies at z<0.5, while about 5% have infrared colors consistent with AGN. The observed infrared colors agree with the spectral energy distribution (SEDs) of local galaxies previously determined from IRAS and ISO data. The average 160um/70um color temperature for the dust is Td~= 30+/-5 K, and the average 70um/24um spectral index is alpha~= 2.4+/-0.4. The observed infrared to radio correlation varies with redshift as expected out to z~1 based on the SEDs of local galaxies. The xFLS number counts at 70um and 160um are consistent within uncertainties with the models of galaxy evolution, but there are indications that the current models may require slight modifications. Deeper 70um observations are needed to constrain the models, and redshifts for the faint sources are required to measure the evolution of the infrared luminosity function.Comment: 16 pages including 11 figures. Accepted A
    • 

    corecore