324 research outputs found

    RF transparent, energy absorbing, structural elements, phase II Final report, 5 Jun. 1963 - 16 Mar. 1964

    Get PDF
    Energy absorbing, structural elements having high specific energy absorption and low dielectric constant and loss tangent - space vehicle applicatio

    Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress

    Get PDF
    Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depression-associated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes. Among the genes displaying sex differences was DNA methyltransferase 3a (Dnmt3a), which shows a greater induction in females after SCVS. Interestingly, Dnmt3a expression levels were increased in the NAc of depressed humans, an effect seen in both males and females. Local overexpression of Dnmt3a in NAc rendered male mice more susceptible to SCVS, whereas Dnmt3a knock-out in this region rendered females more resilient, directly implicating this gene in stress responses. Associated with this enhanced resilience of female mice upon NAc knock-out of Dnmt3a was a partial shift of the NAc female transcriptome toward the male pattern after SCVS. These data indicate that males and females undergo different patterns of transcriptional regulation in response to stress and that a DNA methyltransferase in NAc contributes to sex differences in stress vulnerability

    MLN51 Stimulates the RNA-Helicase Activity of eIF4AIII

    Get PDF
    The core of the exon-junction complex consists of Y14, Magoh, MLN51 and eIF4AIII, a DEAD-box RNA helicase. MLN51 stimulates the ATPase activity of eIF4AIII, whilst the Y14-Magoh complex inhibits it. We show that the MLN51-dependent stimulation increases both the affinity of eIF4AIII for ATP and the rate of enzyme turnover; the K (M) is decreased by an order of magnitude and k (cat) increases 30 fold. Y14-Magoh do inhibit the MLN51-stimulated ATPase activity, but not back to background levels. The ATP-bound form of the eIF4AIII-MLN51 complex has a 100-fold higher affinity for RNA than the unbound form and ATP hydrolysis reduces this affinity. MLN51 stimulates the RNA-helicase activity of eIF4AIII, suggesting that this activity may be functionally important

    Convergent donor and acceptor substrate utilization among kinase ribozymes

    Get PDF
    Accommodation of donor and acceptor substrates is critical to the catalysis of (thio)phosphoryl group transfer, but there has been no systematic study of donor nucleotide recognition by kinase ribozymes, and there is relatively little known about the structural requirements for phosphorylating internal 2′OH. To address these questions, new self-phosphorylating ribozymes were selected that utilize ATP(gammaS) or GTP(gammaS) for 2′OH (thio)phosphorylation. Eight independent sequence families were identified among 57 sequenced isolates. Kinetics, donor nucleotide recognition and secondary structures were analyzed for representatives from each family. Each ribozyme was highly specific for its cognate donor. Competition assays with nucleotide analogs showed a remarkable convergence of donor recognition requirements, with critical contributions to recognition provided by the Watson–Crick face of the nucleobase, lesser contributions from donor nucleotide ribose hydroxyls, and little or no contribution from the Hoogsteen face. Importantly, most ribozymes showed evidence of significant interaction with one or more donor phosphates, suggesting that—unlike most aptamers—these ribozymes use phosphate interactions to orient the gamma phosphate within the active site for in-line displacement. All but one of the mapped (thio)phosphorylation sites are on unpaired guanosines within internal bulges. Comparative structural analysis identified three loosely-defined consensus structural motifs for kinase ribozyme active sites

    Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer

    Get PDF
    <p>Aims: DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In addition, DDX3 was shown to be a direct downstream target of HIF-1α (the master regulatory of the hypoxia response) in breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer.</p> <p>Methods and Results: DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with hypoxia related proteins HIF-1α, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERα, COMMD1, FER kinase, PIN1, E-cadherin, p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients, and was correlated with overexpression of HIF-1α and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERα and c-Met in a HIF-1α dependent fashion, and with COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1α.</p> <p>Conclusions: In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1α and many other hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role of DDX3 which could have clinical implication for current development of DDX3 inhibitors.</p&gt

    An exploration of micro- and macro-level determinants of board effectiveness

    Get PDF
    This paper addresses recent calls to narrow the micro–macro gap in management research (Bamberger, 2008), by incorporating a macro-level context variable (country) in exploring micro-level determinants of board effectiveness. Following the integrated model proposed by Forbes and Milliken (1999), we identify three board processes as micro-level determinants of board effectiveness. Specifically, we focus on effort norms, cognitive conflicts and the use of knowledge and skills as determinants of board control and advisory task performance. Further, we consider how two different institutional settings influence board tasks, and how the context moderates the relationship between processes and tasks. Our hypotheses are tested on a survey-based dataset of 535 medium-sized and large industrial firms in Italy and Norway, which are considered to substantially differ along legal and cultural dimensions. The findings show that: (i) Board processes have a larger potential than demographic variables to explain board task performance; (ii) board task performance differs significantly between boards operating in different contexts; and (iii) national context moderates the relationships between board processes and board task performance. Copyright # 2010 John Wiley & Sons, Ltd

    The governance of co-operatives and mutual associations: a paradox perspective

    Get PDF
    This paper presents a new theoretical framework for understanding the governance of co-operative and mutual organisations. The theoretical literature on the governance of co-operatives is relatively undeveloped in comparison with that on corporate governance. The paper briefly reviews some of the main theoretical perspectives on corporate governance and discusses how they can be usefully extended to throw light on the governance of co-operatives and mutuals. However, taken individually these different theories are rather one dimensional, only illuminating a particular aspect of the board's role. This has lead to calls for a new conceptual framework that can help integrate the insights of these different theories. The paper argues that a paradox perspective offers a promising way forward. Contrasting the different theoretical perspectives highlights some of the important paradoxes, ambiguities and tensions that boards face

    Template-Directed Ligation of Tethered Mononucleotides by T4 DNA Ligase for Kinase Ribozyme Selection

    Get PDF
    Background: In vitro selection of kinase ribozymes for small molecule metabolites, such as free nucleosides, will require partition systems that discriminate active from inactive RNA species. While nucleic acid catalysis of phosphoryl transfer is well established for phosphorylation of 59 or 29 OH of oligonucleotide substrates, phosphorylation of diffusible small molecules has not been demonstrated. Methodology/Principal Findings: This study demonstrates the ability of T4 DNA ligase to capture RNA strands in which a tethered monodeoxynucleoside has acquired a 59 phosphate. The ligation reaction therefore mimics the partition step of a selection for nucleoside kinase (deoxy)ribozymes. Ligation with tethered substrates was considerably slower than with nicked, fully duplex DNA, even though the deoxynucleotides at the ligation junction were Watson-Crick base paired in the tethered substrate. Ligation increased markedly when the bridging template strand contained unpaired spacer nucleotides across from the flexible tether, according to the trends: A2.A1.A3.A4.A0.A6.A8.A10 and T2.T3.T4.T6<T1.T8.T10. Bridging T’s generally gave higher yield of ligated product than bridging A’s. ATP concentrations above 33 mM accumulated adenylated intermediate and decreased yields of the gap-sealed product, likely due to re-adenylation of dissociated enzyme. Under optimized conditions, T4 DNA ligase efficiently (.90%) joined a correctly paired, or T:G wobble-paired, substrate on the 39 side of the ligation junction while discriminating approximately 100-fold against most mispaire
    corecore