2 research outputs found

    Controlling mass loss from RTM6 epoxy resin under simulated vacuum infusion conditions

    Get PDF
    A certified aerospace resin (RTM 6) normally utilised for resin transfer moulding is considered for vacuum infusion. The resin was subjected to simulated vacuum infusion conditions by using a specialised thermogravimetric analysis that enables control of pressure as well as temperature. By varying conditions, it was possible to investigate the expected occurrence of volatile loses during infusion that could cause mechanical or cosmetic defects in a part. With particular reference to RTM6, it was determined that full vacuum could be used for infusion provided that the temperature was kept below ∼130 °C. Higher temperatures could be used, but the applied vacuum should be significantly reduced. Of note is that the manufacturers datasheet recommends processing parameters that could result in volatile loss. As such, the pressure enhanced TGA method may be considered more widely for providing processing conditions supplemental to the manufacturers recommendation for any liquid resin used under vacuum conditions

    Modelling VARTM process induced variations on bending performance of composite Omega beams

    Get PDF
    Finite element simulation with cohesive contact is presented, to correlate the vacuum assisted RTM process and the bending performance of Omega beams. The model considers the process induced variations, including part thickness, resin rich pockets and voids. The bending performance prediction relies on cohesive contact to model delamination initiation and propagation. Computing efficiency is achieved by mesh scaling. The modelling approach applies to three variations of Omega beams with the different mode-mixture ratios. The finite element predictions result in a high degree of agreement with the experimental measurements
    corecore